## UNCLASSIFIED



## AD NUMBER

364 669

# CLASSIFICATION CHANGES

TO

Unclassified

**FROM** 

Confidential RESTRICTED DATA

## **AUTHORITY**

J.B. Wood, 149 DNA/IMTS, 19941997

THIS PAGE IS UNCLASSIFIED

## UNCLASSIFIED



## AD NUMBER

36A 669

## NEW LIMITATION CHANGE

TO

Approved for Public Release; Distribution Unlimited. \* \* Stimt: A

\* \* Code: 1

**FROM** 

NIA

## AUTHORITY

J.B. Wood, DNA/IMTS, 941007

THIS PAGE IS UNCLASSIFIED

## REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.



64669

Operation

POR-2516 (WT-2516)

# **©** ROLLER COASTER

PROJECT OFFICERS REPORT—PROJECT 5.2/5.3b

RADIOBIOLOGICAL, RADIOCHEMICAL, AND PHYSIOCHEMICAL ANALYSES -(U)

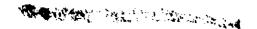
W. J. Major, Project Officer

R.A. Wessman

Tracerlab
Richmond, California

GROUP-1

Excluded from automatic downgrading and declassification.


### RESTRICTED DATA

This document centains restricted data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its centents in any manner to an unauthor "ed person is prohibited.

Issuance Date: August 24, 1965

All distribution of this report is controlled. Qualified DDC users shall request through Director, Defense Atomic Support Agency, Washington, D.C. 20301

CONFIDENTIAL

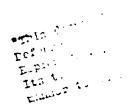


# SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED FERSON IS PROHIBITED BY LAW.


NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

OPERATION ROLLER COASTER

1

PROJECT OFFICERS REPORT—PROJECT 5.2/5.3b

RADIOBIOLOGICAL, RADIOCHEMICAL, AND PHYSIOCHEMICAL ANALYSES (U)



W.J. Major, Project Officer R.A. Wessman

Tracerlab Richmond, California

All distribution of this report is controlled. Qualified DDC users shall request through Director, Defense Atomic Support Agency, Washington, D.C. 20301

GROUP-1

Excluded from automatic downgrading and declassification.

## RESTRICTED DATA

This document contains restricted data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited.

This publication is the suthor(s) report to Director, Defense Atomic Support Agency; Director, Division of Military Application, Alemic Energy Commission; and Director, Atomic Weapons Research Establishment, United Kingdom Atomic Energy Authority, of the results of atomic weapons experimentation sponsored jointly by the United States - United Kingdom. The results and findings are those of the author(s) and not necessarily those of the Department of Defense, Atomic Energy Commitiston, or United Kingdom Atomic Energy Authority. Accordingly, reference to this staterial must credit the author(s). This document is under the control of the Department of Defense and, as such, may only be reclassified or withdrawn from circulation as appropriate by the Defense Atomic Support Agency; Atomic Energy Commission, Division of Operational Support Agency; Ottomic Weapons Research Establishment.

DEPARTMENT OF DEFENSE Washington, D.C. 20301

ATOMIC WEAPONS RESEARCH ESTABLISHMENT Aldermaston, Berksbire, England



Charles and the state of the board of the state of the st

Inquiries relative to this report may be made to

Director, Defense Atomic Support Agency Washington, D. C. 20301

When no longer required, this document may be destroyed in accordance with applicable security regulations.

DO NOT RETURN THIS DOCUMENT

Free Control of the C

#### **ABSTRACT**

Data on the plutonium and uranium content of biological and physical samples, collected and isolated from non-nuclear detonations of plutonium bearing weapons under various storage situations, are presented. A precision tracer (Pu-236) procedure was developed for the rapid analysis of the plutonium, which was non-uniformly distributed in these samples. A fluorimetric procedure was developed for the rapid analysis of uranium.

Measurement of the plutonium content was accomplished by equilibration of tracer with sample plutonium, radiochemical purification, tracer yielding, and alpha pulse-height analysis. This method ensured a high degree of accuracy, high sensitivity, and freedom from interference from other alpha emitters.

Over 4,000 radiobiological, radiochemical, and fluorimetric analysis are tabulated. The analyses were performed at Tracerlab's western division in three isolated laboratories plus separated counting facilities. Accurate laboratory analysis of all samples was achieved with no personnel contamination or cross-contamination of samples. Procedures for radiochemical analyses, handling of special problems, techniques of Alpha Pulse Height Analysis, quality control measures, and additional data based on radiochemical analysis and radiometric measurements are presented.

### PREFACE

We are grateful to Dr. K. Stewart of the United Kingdom and Professor R. Wilson of the University of Rochester for their helpful suggestions.

### CONTENTS

| ABSTRACT                                                                                         | 5  |
|--------------------------------------------------------------------------------------------------|----|
| PREFACE                                                                                          | 6  |
| CHAPTER 1 INTRODUCTION                                                                           | 11 |
| 1.1 Objectives                                                                                   | 11 |
| 1.2 Background                                                                                   | 11 |
| 1.3 Facilities                                                                                   | 12 |
| 1.4 Services and Material                                                                        | 14 |
| 1.5 Personnel                                                                                    | 16 |
| CHAPTER 2 PROCEDURES                                                                             | 18 |
| 2.1 Sample Inventory                                                                             | 18 |
| 2.2 Projected Activity Levels                                                                    | 19 |
| 2.3 Sample Processing                                                                            | 22 |
| 2.4 General Laboratory Methods                                                                   | 28 |
| 2.5 Preparation of Tracer                                                                        | 43 |
| 2.6 Activity Measurements                                                                        | 46 |
| 2.7 Calculations                                                                                 | 50 |
| CHAPTER 3 DATA PRESENTATION                                                                      | 52 |
| 3.1 Discussion                                                                                   | 52 |
| 3.2 Biological Data                                                                              | 52 |
| 3.3 Physical Data                                                                                | 54 |
| 3.4 Miscellaneous Data                                                                           | 57 |
| 3.5 Control Data                                                                                 | 58 |
| 3.6 Data Summation                                                                               | 59 |
| CHAPTER 4 CONCLUSIONS AND LABORATORY RESULTS                                                     | 61 |
| 4.1 Conclusions                                                                                  | 61 |
| 4.2 Laboratory Results                                                                           | 62 |
| APPENDIX A DETAILED LOCATION OF PHYSICAL STATIONS                                                | 67 |
| APPENDIX B RADIOBIOLOGICAL, RADIOCHEMICAL, AND PHYSIOCHEMICAL PROCEDURES FOR Pu <sup>239</sup> , |    |
| DUZU AND UDANTIM IN VARIOUS CAMPI ES                                                             | 75 |

| APPENDIX C   | SAMPLE DATA SHEETS                                                                                                                                              | 127        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| APPENDIX D   | TECHNICAL PAPER FOR HANFORD SYMPOSIUM AND 9TH ANNUAL MEETING HEALTH PHYSICS SOCIETY                                                                             | 130        |
| APPENDIX E   | DATA TABLES FOR PU <sup>239</sup> , PU <sup>236</sup> AND URANIUM (U <sub>3</sub> O <sub>8</sub> ) IN PHYSICAL, BIOLOGICAL, TRACER, AND QUALITY CONTROL SAMPLES | 149        |
| APPENDIX F   | EQUIPMENT AND PLOT OF TYPICAL SPECTRUM                                                                                                                          | 266        |
| REFERENCES - |                                                                                                                                                                 | 271        |
| TABLES       |                                                                                                                                                                 |            |
|              |                                                                                                                                                                 |            |
| 2.1 Selected | TG-57 Data for Plutonium Activity                                                                                                                               | 20<br>47   |
| 2.2 Total C  | ounting Time Required to Give Listed Error Tissues with Greatest Pu Content                                                                                     | 55         |
| D.1 Effect o | of Sample Size on Pu Recovery                                                                                                                                   | 144        |
|              | nemical Analysis of Roller Coaster Samples,                                                                                                                     |            |
|              | ble Tracks                                                                                                                                                      | 152        |
| E.2 Radioch  | emical Analysis of Roller Coaster Samples,                                                                                                                      |            |
|              | an Slate I                                                                                                                                                      | 172        |
|              | emical Analysis of Roller Coaster Samples,                                                                                                                      |            |
|              | an Slate II                                                                                                                                                     | 185        |
| E.4 Radioch  | emical Analysis of Roller Coaster Samples, an Slate III                                                                                                         | 205        |
|              |                                                                                                                                                                 | 205<br>225 |
|              |                                                                                                                                                                 | 234        |
|              |                                                                                                                                                                 | 245        |
| E.8 Estimat  | ted Activity Expenditure of Project 2.6c "A"                                                                                                                    |            |
| San          | aples in Particle Analysis                                                                                                                                      | 251        |
|              | um and Uranium Analysis of Roller Coaster                                                                                                                       |            |
|              |                                                                                                                                                                 | 253        |
|              | ium and Uranium Analyses of Roller Coaster                                                                                                                      | 254        |
|              | direct presiptory other state —                                                                                                                                 | 237        |
| F.II PIUCO   | ium and Uranium Analyses of Roller Coaster tilled Water Samples, Clean Slate III                                                                                | 255        |
| E-12 Trace   | r Standardization Results                                                                                                                                       | 257        |
|              | chemical Analysis of Roller Coaster Biological                                                                                                                  |            |
|              |                                                                                                                                                                 | 258        |
| E.14 Radio   | chemical Analyses of TLW Biological Quality                                                                                                                     |            |
|              |                                                                                                                                                                 | 260        |
|              | chemical Analysis of Roller Coaster Physical                                                                                                                    | <b>.</b>   |
| Qus          | ality Control Samples                                                                                                                                           | 261        |

| E           | 6 Radiochemical Analyses of TLW Physical Quality                     |
|-------------|----------------------------------------------------------------------|
| E.1         | Control Samples                                                      |
| -41-        | 7 Number of Analyses of Biological Samples for Plutonium and Uranium |
| E.1         | 8 Number Analyses of Physical Samples for Plutonium and Uranium      |
| FIGUR       |                                                                      |
| <b>A.1</b>  | Clean Slate igloos                                                   |
| Λ.2         | rixed surface instrument array                                       |
| A.3         | rixed surface instrument array                                       |
| A.1         | MOVADIE SUFIACE INSTRUMENT AFFAV                                     |
| A.5         | Movable balloon-supported instrument array 71                        |
| <b>A</b> .6 | Details of balloon curtain at 2,000-foot radius 72                   |
| <b>A.</b> 7 | Details of balloon curtain at 13,000-foot radius 73                  |
| <b>A.</b> 8 | Details of balloon curtain at 50,000-foot radius 74                  |
| D.1         | Reflux apparatus for biological sample145                            |
| D.2         | Chemical dissolution, separation, and purification                   |
|             | sequential scheme146                                                 |
| D.3         | Plutonium electroplating sequential scheme 147                       |
| D.4         | Typical spectra, biological sample148                                |
| F.1         | Reflux apparatus for biological sample 267                           |
| F.Z         | Frisch-Grid chambers                                                 |
| F.3         | TMC multichannel analyzer269                                         |
| F.4         | Typical spectra, biological sample                                   |
|             |                                                                      |

### CONFIDENTIAL

## CHAPTER 1 INTRODUCTION

#### 1.1 OBJECTIVE

The objectives of Project 5.2b (Radiobiological Analysis was to provide accurate laboratory analysis of animal tissue, bone material, and metabolism samples for plutonium and uranium content. Plutonium analyses were performed on all samples and uranium analyses on approximately ten percent except Clean Slate II, dogs and sheep, which required uranium analyses on most samples. The uranium analyses were representative of sample and animal types.

The object of Project 5.3b (Radiochemical and Physiochemical Analysis) was to provide accurate laboratory analysis of air, deposition, water, vegetation, sticky wire, and soil samples for plutonium and uranium content. Plutonium analyses were performed on all samples and uranium on approximately 10 percent, representative of sample types.

#### 1.2 BACKGROUND

The personnel associated with Project 5.2/5.3b did not participate in the field phases of operation Roller Goaster. Reference is given therefore, to other projects for a description of operational events and sample collection for laboratory & alyses. The scope of

GROUP 1
Excluded from automates descripteding and decimanthesis

CONFIDENTIAL RESTRICTED DATA

this project was to provide facilities, services and materials to carry out the dual objectives listed above.

#### 1.3 FACILITIES

Laboratory: The radiobiological, radiochemical, and physiochemical analyses of the field collections for plutonium and uranium are one of the prime sources of evaluative data for Froject Roller Coaster. The samples collected represent individually, and totally, large sums of money and scientific effort. For this reason, analyses were performed with great care, attention to detail, and utmost precision. Only those techniques which resulted in unequivocal data were used. Particular attention was given to the problem of crosscontamination. Two techniques were employed. The first was sequential processing, starting with low level samples and proceeding to the higher level samples, the second involved the physical separation of high, intermediate, and low level facilities. Both techniques were used in series. The lowest of high level samples were processed initially in the intermediate level facilities. For high level samples, a special wing of the main laboratory building was employed for initial separation and aliquoting, followed by processing in the intermediate laboratory. All low level samples were processed in a separate low level laboratory.

Counting and Calculations: These facilities were located in an isolated wing of the building. Advanced counting and calculation techniques used by Tracerlab for a number of years were employed. Detailed procedures are given in the reference.

Each sample for Pu analysis was counted on a 2 T methans-

12

### CONFIDENTIAL

this project was to provide facilities, services and materials to carry out the dual objectives listed above.

#### 1.3 FACILITIES

Laboratory: The radiobiological, radiochemical, and physiochemical analyses of the field collections for plutonium and uranium are one of the prime sources of evaluative data for Project Roller Coaster. The samples collected represent individually, and totally, large sums of money and scientific effort. For this reason, analyses were performed with great care, attention to detail, and utmost precision. Only those techniques which resulted in unequivocal data were used. Particular attention was given to the problem of crosscontamination. Two techniques were employed. The first was sequential processing, starting with low level samples and proceeding to the higher level samples, the second involved the physical separation of high, intermediate, and low level facilities. Both techniques were used in series. The lowest of high level samples were processed initially in the intermediate level facilities. For high level samples, a special wing of the main laboratory building was employed for initial separation and aliquoting, followed by processing in the intermediate laboratory. All low level samples were processed in a separate low level laboratory.

Counting and Calculations: These facilities were located in an isolated wing of the building. Advanced counting and calculation techniques used by Tracerlab for a number of years were employed. Detailed procedures are given in the reference.

Each sample for Pu analysis was counted on a 2 TI methane-

12

#### CONFIDENTIAL

flow, internal alpha counter to determine its range of activity. This internation was then used to preset the precision (alpha pulse height inalysis) counting time and to prevent mixup of samples. The range of counts was limited by dilutions to approximately 2,000 cpm. The range of counts in the original sample was 0 to 108. Counts per minute was converted to dpm by standard calculation procedures given in the references.

The technique of accurate alpha pulse height analysis depends on such factors as: preparation of high quality standards, calibration and maintenance of the equipment and routine background, and operational checks of counting instruments. Six Traceriab Frisch Grid Chambers were employed for plutonium alpha detection. Three Technical Measurements Corporation, multi-channel analyzers were used for readout. Four Frisch Grid Chambers were connected to one multi-channel analyzer by dividing the full range into four quadrants. The Frisch Grid Chambers were routinely operated in this manner.

The results of the alpha pulse height analysis are presented on tape. A graphical plot was made of this information where shape and resolution of alpha peaks were marginal. The various corrections and factors were applied to the data and the final result calculated as concentration per sample.

A computer program for data tabulation was developed. The program simplified new data insertion and provided for printing of results rapidly and economically. An IBM card punch, located in a room adjacent to the counting room, was employed for transcribing raw data.

Storage: All biological samples were stored in a specially built walk-in freezer located in the viewel laboratory. The unit was large enough to store all the sample freezer boxes with adequate spacing for easy access. The physical samples were stored in metal, office-type file cabinets with fabricated security locks. Mounted samples, following analyses, were stored in locked file cabinets in the counting room. Unused portions of samples were stored on shelves in a locked stockroom located adjacent to the intermediate level laboratory.

#### 1.4 SERVICES AND MATERIALS

Services and materials were provided to perform a research project consisting of plutonium and uranium analysis on the following variety of sample matrices:

Casella Impactor Discs

Casella Impactor Filters

Andersen Sampler Discs

Andersen Sampler Filters

Total Air Samples

Total Air Samples Disposable

Sequential Air Samples

Balloon Wire Swipes

Water Samples

Vegetation (Sagebrush)

**Deposition Samples** 

Soi. Samples

**Biological Samples** 

Servicus and materials were provided to assure that resultant data was most meaningful to the requirements of Project Roller

Coaster and that biweekly progress reports giving accrued results were submitted to Director, DASA. This included:

- (1)\* Use of new glassware for each analysis.
- (2)\* Isolation of personnel and facilities for varying levels of activity.
- (3) Constant monitoring of muffle furnaces, hoods, work tables, floors, etc., by trained monitors under supervision of a Certified Health Physicist.
- (4)\* Utilization of Plutonium 234 tracer techniques on all samples to assure measurable and accurate yields on all samples.
- (5)\* Analyses of all plutonium samples by alpha spectroscopy,
- (6)\* Complete dissolution of each sample prior to purification.
- (7) Establishment of reagent blanks less than 0. 1 alpha dpm  $\pm$  100% and less than 5  $\times$  10<sup>-9</sup> grams for plutonium and uranium respectively.
- (8) Laboratory monitoring of stippled plates of dissolved samples as a means of sample separation by activity level and preventing sample mixup.
- (9)\* Electrodeposition of plutonium on platinum discs as the final step of the analysis.

<sup>\*</sup> These procedural techniques were stipulated by the Roller Coaster Radiochemistry Referee Team and were conditions of the contract.

- (10) Storage of unused portions of samples and all mounted samples for a period of one year or until notification was received by the Contracting Officer, whichever came first.
- (11) Continuous Tracerlab staff evaluation monitoring of a quality control program.

#### 1.5 PERSONNEL

Tracerlab provided all the personnel for the services described under Section 1.4. These included the following and their responsibilities:

- (1) Evaluation Staff: General conduct of the project, monitoring of the quality control program, and review of periodic reports.
- (2) Project Officer (1): Supervision of the project operation, health and safety standards, review of all data, writing of periodic reports, liaison with cognizant Roller Coaster officials.
- (3) Radiobiologist (1): Operation of radiobiological laboratory and sample accountancy.
- (4) Physiochemist (1): Operation of two physiochemical labortories and sample accountancy.
- (5) Radiobiological Technicians (3): Radiobiological analyses of physical samples.
- (6) Physiochemical Technicians (3):- Physiochemical analyses of physical samples.
- (7) Uranium Technician (1): Uranium analyses and calculations.

- (8) Health Physicist (1): Routine monitoring of work areas and waste materials.
  - (9) Radiometrics Head (1): Review counting and calculations.
  - (10) Counting Technician (1): Gount plutonium samples.
- (11) Calculation Clerks (2): Calculate plutonium counting data.
- (12) Computer Data Clerk (1): Punch and proofread computer data.
- (13) Electronics Technician (1): Maintain counting instrumentation.

#### CHAPTER 2

#### **PROCEDURES**

#### 2.1 SAMPLE INVENTORY

Biological: The samples arrived by government air freight at the Alameda Air Terminal in Oakland, California, on 20 September 1963. They were contained in 12 polyfoam freezer boxes weighing approximately 50 pounds per box. All the boxes appeared to be in good condition and a receipt for the same was given to the DASA courier who had accompanied the samples from Kirtland Air Force Base, Albuquerque, New Mexico. The boxes were transported to Tracerlab by truck and placed in the walk-in freezer unit in the low level laboratory, awaiting inventory instructions from cognizant DASA security personnel. On 26 September 1963, the contents were inventoried in the presence of a DASA security officer. All samples not clearly marked were restage ged and returned to their original containers. A separate log book was established, and the following week a quality control program was iniated. Quadruplicate analyses were run on all reagent materials and a low level background established. A tracerlab code number was assigned each sample.

Physical: The samples were delivered to Tracerlab by Tracerlab's
Health Physics Officer at intervals spanning a three-week period,
starting in mid-October 1963. The samples were contained in
heavy-duty cardboard boxes, doubly wrapped. All boxes appeared

18

CONFIDENTIAL

to be in good condition. The Double Tracks samples arrived first, tollowed by Clean State I, II, and III. The samples were placed in the combination security files in the intermediate level laboratory and inventoried in the presence of the Tracerlab Security Officer. A separate log book was established and a Tracerlab code number assigned each sample. All samples were clearly marked and identification presented no problems. A quality control program was initiated shortly after arrival of the samples. This program was purposely delayed until after final sample inventory to determine if any contamination of the laboratory had occurred. Quadruplicate analyses on reagent materials and laboratory swipes were run and a low level background established.

#### 2.2 PROJECTED ACTIVITY LEVELS

Piological: Based on the results of TB-57 (Reference 1)\*, the majoraty, of tissues were expected to be low in total plutonium content. The range would be from almost undetectable to thousands of dpm of plutonium in the nasal mucosa and GI tract (Table 2.1). Because of the spread between activity levels, extreme care was taken in the preparation and processing of the low level tissue samples. As far as the receiving laboratory was concerned, these samples represented no problem in plutonium handling. Since activity in a sample might be distributed unevenly, the entire sample was always analyzed.

\* (Also, see References 2 through 8.)

TABLE 2.1 SELECTED TG-57 DATA FOR PLUTONIUM ACTIVITY

| Tissue                     | Mean Weight<br>(Grams) | DPM/Gm<br>Magnitude | DPM/Qrgan |
|----------------------------|------------------------|---------------------|-----------|
| Spleen                     | 23, 9                  | 0, 1                | 2.4       |
| GI tract<br>plus Contents  | 548, 6                 | 10                  | 5500      |
| Liver                      | 309.0                  | 0, 01               | 3, 1      |
| Lung                       | 76.6                   | 0,5                 | 38        |
| Trachea                    | 11.9                   | 1                   | 12        |
| Right Femur                | 34.7                   | 0, 1                | 3.5       |
| Rib                        | 4, 6                   | 1                   | 4.6       |
| Hilar Lymph<br>Node        | 0,45                   | 10                  | 4, 5      |
| Mediastinal<br>Lymph Nodes | 0,31                   | 10                  | 3.1       |
| Nasal Mucosa               | Not Analyzed           |                     |           |

The levels of uranium at 500, 5000, 7500, and 17,500 feet animal positions corresponding to the plutonium are, based on extrapolation from TG-57 data, proportional to the ratio of uranium to plutonium in the test device. Thus in samples very low in Pu content, the uranium level was expected to be near the limits of detection of the fluorimeter.

<u>Physical</u>: The sources of plutonium and uranium from the Roller Coaster tests were soils and various types of collection devices (surface and airborne), such as filters, impactors, and sticky plates; all located at various distances from the detonation crater, based on TG-57 data. The activity levels were expected to range from 0 to 10<sup>7</sup>

dpm. Particulates of all sizes were expected to be in various matrices.

The plutonium and uranium would vary in chemical composition from metals to various alloys, oxides, and salts produced in the heat and pressure of the explosion. Projected activity levels for various sample types are given below.

- (1) Crater Samples: The crater samples will be extremely nigh level with most of the activity near the rurface. In TG-57, 80 square-inch samples were taken to a depth of two feet and sectioned into 1/4 inch increments. At the surface, this amounted to a milligram of plutonium per 25 grams of soil.
- (2) Soil Samples: The samples from soil cores and surface fallout were spread out over many square miles. Three levels of surface samples (corresponding to those observed in TG-57) were considered, i.e., 500, 40, and 2.6 μg/M<sup>2</sup> at distances of 500, 1000, and 2000 feet, respectively. An 80-square-inch (0.0515 M<sup>2</sup>) surface sample yields 25, 2, and 0.13 μg plutonium, respectively. These sample sizes were more than ample for uranium fluorescence and radiochemical analysis. Uranium in Nevada soil has been determined. The levels range from 0.1 to 6.0 μg/g of soil, which represents an appreciable normal uranium background.
- (3) Filter and Impactor Exit Filter Samples: The levels of filter activity observed in TG-57 for fallout samples of various distances were less than one microgram of Pu at 1000 feet and 0.01 µg at 25,000 feet.
- (4) Sticky Samples: The targets of the various impactor jets as well as fallout plates employ an alkyd resin surfacing to retain the

particulates as they impact or fall out on the surface. The levels of Pu activity observed on these surfaces were estimated to be of the same order of magnitude as the air filter, or in the case of sticky plates, equivalent soil samples.

#### 2.3 SAMPLE PROCESSING

Handling Techniques: Advantage was taken of information locating the field position of the sample with respect to ground zero and the gross alpha counting data supplied with each sample. Samples were screened and rough assayed to confirm the accompanying data. The handling facilities themselves were checked routinely and blank samples processed to confirm the ambient levels.

As indicated in Table 2.1, the biological samples generally constituted the lowest level samples and were processed in the low level laboratory. lowest level samples and were processed in the low level laboratory. Those biological samples having a probable higher Pu content were processed in an isolated section of the low level laboratory. In contrast, the debris samples, potentially several orders of magnitude higher in plutonium content even at the 250,000-foot distance, were treated as high level samples and processed separately until their Pu content was established.

Techniques gained through experience for prevention of cross contamination and mixing in the laboratory were employed. In particular, these techniques included proper recording and marking of each sample by the analyst at every stage in the process. All reagents used in this work were made up fresh in new containers and designated accordingly. New glassware was used for every analy-

RFP 3-63. When muffle furnaces were employed, each sample was covered to remove the possibility of flake out. Hoods, laboratory surfaces, and other exposed areas were cleaned routinely and monitored for possible alpha contamination. The unused portions of samples were returned to the original containers when possible, checked for proper labeling, and stored in a locked cabinet until notification of disposition was received from the contracting officer. Similarly, both the counting discs and planchets (stored in individual envelopes or pillboxes) and the original counting data were retained until notified by the contracting officer. Blanks, spikes, duplicates, and actual standards as required were analyzed and furnished to referees or the agency designated by DASA.

Security and Accountability: Several means of assuring adequate security and accountability of all biological and physical samples were investigated. The methods given below offered the most effective operation.

- (1) Biological and physical samples inventoried by two persons and sample numbers initiale! by each on inventory sheets.
- (2) Active Inventory: Biological and physical samples withdrawn from inventory (by convenience, activity level, and event) recorded in separate logs, assigned a consecutive Tracerlab number, and initialed by custodian.
- (3) Each sample assigned a card at start of analysis, card initialed by analyst at start of every major step (preparation, tracer addition, dissolution, and purification).

- (4) Sample card information dup icated in sample log.
- (5) After decontamination sample assigned a data sheet, pertinent information entered, and sample transferred to counting room.
- (6) Sample recorded and initialed by counting room custodien in a special counting room log with a consecutive number matching that in the chemistry log.
- (7) Sample stored in security file and final calculations processed by Traceriab's normal red dot doublecheck.
- (8) Final data reviewed by counting room supervisor, project officer, and department manager.
- (9) Following final review of the raw data, a tabulation of all values was made by animal numbers (for biological samples) and arc location (for physical samples).

<u>Production Operation</u>: The following procedures were employed to achieve maximum production.

- (1) Different analyst assigned to each phase of the production operation on a rotation basis.
  - (2) Samples prepared for dissolution in batch type operation.
  - (3) Tracer added in batch type operation.
  - (4) Samples solubilized in batch /pe operation.
- (5) Samples decontaminated in continuous operation (samples were processed by pairs. Thus, it was possible to precipitate, centrifuge, extract, etc., several sets of samples in a continuous operation eliminating dead time).
  - (6) Plated samples monitored for approximate yield.

(7) Plated samples inspected and data sheet prepared by custodian.

à

- (8) Samples 2 TT counted to estimate requir J alpha pulse height analysis time and to provide a double check on final result.
- (9) Production schedules set for each analyst and weekly results posted.

Preparation: The treatment of the physical samples varies according to the nature of the collection media. These divide into three types: a heterogeneous mixture of soil and debris, air and surface fallout, and resuspended particulates collected on organic filters and similar material adhering to sticky plates. Because of the high levels of plutonium alpha activity expected, all field and laboratory procedures were reviewed with regard to preventing cross contamination and preserving the integrity of the samples. The level of uranium was not hazardous but similar precautions apply.

The samples for radiochemical and uranium fluorimetric analysis were categorized at the time of receipt of the samples. The samples were already grouped at the test site. Similar levels of alpha activity were handled together and precautions against cross contamination were maintained. Because of the relatively high levels of alpha activity, some samples were processed in glove boxes.

All samples were ultimately reduced to the levels required for laboratory operations and stored or processed as scheduling permitted.

Dilutions were made such that no aliquot contained more than 4000 dpm.

Sample Control: Strict sample control was Instituted in order to be sure that samples were not misplaced, delayed, or processed with samples of different activity magnitude. As mentioned earlier, many samples received for processing contained designations as to general activity level and sampling location. This information was useful in routing the sample to the proper dissolution laboratory. Locations of particulate samplers consisting of six-stage Andersen impactors, five-stage Casella impactors, total air samplers, and sticky cylinders, are given for reference in Figures A. 2 through A. 8.

Figure A. 1 shows Clean State igloo dimensions.

For each lot of samples received, a sample check-off sheet was initiated containing sample numbers and due dates. It was reproduced and distributed to the key personnel along the processing route. These personnel checked off the samples as they were processed, and thus continuous check on sample status was maintained. In addition, a sample processing card and sheet (mentioned in Section 2.3) was initiated for each sample. The card contained pertinent chemical information and followed the sample through dissolution and decontamination. The processing sheet, in addition to the card information, contained spaces for recording all data needed to calculate the analytical results. Spaces were provided for sample size, sample aliquots, tracer aliquots, etc. It also contained sample routing instructions and followed the sample from decontamination through calculations. A typical processing sheet is included in Appendix C. When final calculations were completed and reviewed by the project officer, the data was transcribed to IBM cards for the preparation of a computer report. Quality Control: In order to maintain high quality standards, the analytical work of this laboratory was closely controlled. This control was maintained in the laboratory and in the counting room, Blank samples were processed completely through chemistry and counting to determine if there was any laboratory contamination. Known plutonium samples (standards prepared by adding a Pu-239 spike to a matrix material similar to those being processed) were similarly cycled through the laboratory to check on procedures and counting geometry factors. In addition, standard and calibration samples furnished by DASA referee personnel were processed to assure results of all Roller Coaster contractor laboratories were comparable. Beta gamma, and alpha activities of electrodeposited alpha samples of solutions of pure Pu<sup>239</sup> and mixed Pu<sup>239</sup> were cross-counted among Air Force and AEC laboratories during the Roller Coaster analyses period. Periodic blank samples were also cross-counted.

The techniques used in maintaining high quality standards for uranium analysis are specified in the detailed Fluorimetric Determination Procedure included in Appendix B. Blanks, standard solutions, and spiked unknowns were analyzed with each batch of 20 samples. A routine review of the results of all samples processed was performed by the project leader or his delegated assistants. All counting data was reviewed to asertain that alpha spectrometer runs were good as to alpha peak resolution, that the alpha peaks were properly shaped without undue tailing of one peak into the next, and that the base area of the peak was properly defined. Other aspects of the sample

run were checked such as adequate chemical yield, clean weightless electrodeposits on Pu sample plates, etc. Any discrepancies
were reported to the project leader on the QUALITY CONTROL - SAMPLE DEFICIENCY REPORT form for appropriate action. A copy of this
form is attached in Appendix C.

#### 2.4 GENERAL LABORATORY METHODS

Discussion: The material presented in this section describes, in general, radiochemical techniques used by Traceriab for a number of years for determining Pu-239 and uranium in various sample types.

In particular, Pu-236 tracer yielding for all pluton' an enalyses was employed. Radiochemical techniques were such that yields greater than 60% were generally obtained. Separation of uranium and pluton-tum was carried out on every sample. Furthermo: all plutonium samples were measured by pulse height analysis techniques, with high sensitivity and assurance of no interference by other alpha emitters. The counting error had a precision of 10% for the low counting samples when economically feasible and 3% or better for the more active samples.

The recovery efficiency for uranium was checked on each analysis according to the techniques described in "SCTM 369-59(51) Test Group 57 Radiochemistry", by R. J. Everett and R. W. Drake. All samples were completely dissolved. An aliquot, usually 10% of the total dissolved solution, was taken from samples requiring uranium analysis. When required, an extraction was performed to remove quenching agents suc 12 copper and iron cations. The total uranium was determined by a fluorescence technique in a Jarrell-Ash

#### CONFIDENTIAL

Fluorimeter.

The biologicals presented some unique challenges both in dissolution and purification. Prior to the start of the project, an exhaustive literature survey was made and consultations held with individuals learned in the bioassay field on the problem subject. Most
of the information and procedures offered, however, dealt with organics less than 50 grams in weight. Very little was known about analyzing pound size samples for plutonium and uranium. It was decided,
therefore, to combine modified Tracerlab biological procedures with
those in the literature, to fit the situation. A lengthy development program produced the detailed radiochemical and fluct imetric procedures
given in Appendix B.

A technical paper, "Routine Determination of Plutonium by Tracer Techniques in Large Biological Samples," based on our biological development work, was presented at the Hanford Symposium on "Inhaled Radioactive Particles and Gases" and at the 9th annual Health Physics Society in Cincinnati, Ohio. A copy of the paper is given in Appendix D.

The biological samples were processed concurrently with the physical samples, which were arranged in order of Double Tracks, Clean Slate I, II, and III. The techniques for dissolution, separation, purification, are described in the following paragraphs. It should be mentioned that a given procedure does not necessarily cover every chemical or counting situation. Often one or more samples among identical types required special treatment.

29

Biological Sample Dissolution: The biological dissolution procedures employed resulted in the least loss of sample,. Wet versus dry dissolution was experimentally compared. Dry ashing of most biological samples, although convenient and inexpensive, results in loss of sample by spattering, mechanical entrainment, and polymerization and formation of insoluble oxides of Pu. This is especially true of samples which have high organic-to-ash ratios. In these cases it may be difficult or impossible to recover all of the sample plutonium from the walls of the ashing container. Loss occurring at this stage may result in inaccurate sample yielding. Bone samples have a low organic-to-ash ratio, and the ash serves as a carrier to prevent loss of Pu during dry ashing. The bone ash is bulky and easily removed from the ashing container by dissolving in acid and then is equilibrated with Pu tracer. Wet dissolution in the presence of Pu-236 tracer allows exchange of sample Pu with tracer and control over excessive temperatures, thus preventing formation of insoluble oxides and polymers. Wet dissolution was routinely performed, using a refluxing apparatus (Figures F.1 through F.3) or open beakers, by an experienced chemist. All samples processed for plutonium analyses employed Puns tracer for yielding. The tracer activity was normally aliquoted such that it was within a factor of five of the expected sample activity but a minimum of 15 dpm. The tracer was always added at the start of dissolution except for bone samples. Dissolution of the biological samples varied with the tissue or metabolism type and size. A brief discussion of each is given below.

(1) Small tissues (<2 ounces): Samples were placed in ap-

30

#### CONFIDENTIAL

propriate sized beakers (250 to 400 ml), organ activity was estimated from the data in TG-57, and appropriate tracer, added. Each sample was covered with HNO3 and the mixture boiled to low volume. Fuming HNO3 and HClO4 were added and the mixture again boiled to low volume. When the HNO3 was driven off and the HClO4 concentrated by boiling, an exothermic reaction took place and moderate foam swelled up inside the beaker. The reaction could be controlled by the addition of HNO3, but with small organics this was not usually necessary. Further boiling produced a clear solution containing only minor amounts of salts which were solubilized on dilution. Care was taken to avoid evaporation to dryness since formation of explosive perchlorate salts would result.

in appropriate sized beakers (1 to 4 liters) and tracer added. Each sample was covered with HNO3 and boiled to low volume. Sulphuric acid was added to char the organic and the mixture fumed to low volume twice until a deep red solution was obtained. Fuming HNO3 was added and the solution boiled to low volume. Nitric acid and HClO4 were added in that order and the solution boiled to low volume. Sulphuric acid was again added and the solution boiled to low volume. Sulphuric acid was again added and the solution boiled to low volume to drive off all HClO4 which forms explosive mixtures with the cupferron—CHCl3 reagent added later to extract plutonium and uranium. The dissolution of the samples in this category was done by the HClO4 method rather than the H2SO4 reflux method since the former was much faster. Also the amount of organic present at the time of HClO4 addition was small and any exothermic reaction (occurring

when hot concentrated HClO<sub>4</sub> is mixed with organic matter) was mini-

Large Tissues (>3 pounds): Most of the samples in this category were dissolved in four-liter beaker; a few tissues had to be divided into two or more sections to fit. To eliminate the thawing process, an electric knife was used for the division. Tracer.  $K_2SO_x$ , Hg catalyst, and antifcam agent was added to each section. Enough H2SO4 was added to cover the sample, and an inverted 6-inch funnel, held by a ring stand, was placed inside the beaker. The sample was placed on an individual hot plate (covered with asbestos to avoid cracking of beaker at ensuing high temperatures) and heated at low temperature until a black tar mixture was obtained. The heat was increased until the tar turned to, in order, black jelly, black liquid, red liquid, clear solution. During high-temperature heating the  $\mathrm{H}_{200_4}$  refluxed and the inverted funnel was raised or lowered to control the action. Asbestos wrapped around the beaker increased the temperature and reflux conditions. A trace of carbonaceous material left on the peaker and funnel walls after refluxing was removed by  $\mathrm{HClO}_{\scriptscriptstyle{A}}$  cleansing and boiling. However, the formation of metal organic salts from the  $\mathrm{HClO}_4$  precluded good decontamination and  $\mathrm{H_2SO}_4$ washings were substituted. The remaining H\_SO\_4 was finally fumed to wet dryness. Since many samples were processed simultaneously the billows of heavy, toxic SO3, HClO4, and nitrous oxide fumes outside the lab created a potential health problem. A multi-vacuum apparatus, leading to a large polyethylene carboy filled with a dilute base, trapped most of the fumes. The balance were solubilized in a waterscrubber apparatus attached to the outside mood vents. Distillation and condensation of the acid fumes was also tried inside the hood and found to be effective. During H<sub>2</sub>SO<sub>4</sub> evaporation large amounts of inportant salts (from the combination of the acid radical and the minerals in the animal organ) precipitated out of the acid solution. Since these salts interfered with later decontamination of Pu and U, a procedure was developed in which the heavy elements were reduced with NH<sub>2</sub>CH-HCl and extracted from the bulk salts with cupierron and CHCL<sub>3</sub>. As a result of this modification clear plates and good yields were obtained.

Bone Samples (All Sizes): Al. bone samples were dried in (4) a drying oven overnight to reduce smoking and popping during the ashing operation. Following the drying process the bones were cut as required and ashed at 500°C overnight in Corningware (Corningware is glazed and eliminates ash sticking to the walls). The ash, salts, and low smoke content of bones obviated swelling and entrainment loss of Pu (as contrasted to animal organ samples). The ash was transfered quantitatively to a beaker and dissolved in HCl. Tracer was added at this point rather than at the start to assure equilibration and accurate yield. Losses of U as well as Pu in ashed bone samples are prevented by the heavy ash content. The solution was boiled to low volume and the plutonium and uranium extracted from the large amounts of salts by the cupterron - CHCl3 method mentioned earlier. The extracted material was boiled to low volume and reboiled with  $\mathrm{HClO}_4$  to wet dryness. in the larger bone samples, a white residue appeared at this point and a second extraction was necessary. A few ml of HCl was added to the final wet dry HClO4 mixture prior to the second extraction. An attempt was made to remove Pu from an acid solution on a  $\operatorname{Zr}_3(PO_4)_4$ 

precipitate. However, the yields were lower and plates extremely dirty, distorting the alpha energy spectrum. This procedure was discarded early for the extraction.

ples were analyzed similarly except urine samples were first evaporated to wet dryness (after tracer addition). Both types of samples were then covered with HNO3 and boiled to low volume. Fuming HNO3 was added and the solution cautiously evaporated to dryness. When the samples were near dryness, ignition occurred and the residue burned slowly with the evolution of nitrous oxide fumes. After the pyrotechnic flame had subsided the residue was taken up with HNO3 and HClO4 and boiled to low volume as in the medium tissue procedure. Sulphuric acid was added and the mixture boiled to drive off HClO4 prior to the extraction with cupferron-CHCl4.

Biological Sample Purification: After dissolution, the sample was purified. Purification is necessary to decontaminate the sample from other radionuclides present and secondly to separate plutonium from macro amounts of all other elements. The final product is a weightless, contaminant-free invisible deposit of plutonium. The preparation of a weightless deposit yields sharp, well-resolved alpha peaks. The procedure is simple, well-established, and with normal care results in high yield. The basic steps in the procedure are Fe (OH) precipitation, ion-exchange separation, and electroplating onto a polished platinum disc. The plated sample is placed in a small labeled metal contains, and is counted by alpha pulse height analysis.

The purification of the larger biological and bone samples pre-

sented some special problems. Off color (white) Fe(OH)<sub>3</sub> precipitates, acid dissolution residues, and violent NaBrO<sub>3</sub> oxidation reactions often occurred if a hexone extraction was employed.

Removal of salts in the cupierron - CHCl<sub>3</sub> extraction immediately following dissolution eliminated most of the problems described.

As mentioned earlier, some bone samples required two additional cupierron - CHCl<sub>3</sub> extractions to prevent large CaOH-CaPO<sub>4</sub> precipitates occurring in the first step in purification. Purification of a biological sample sometimes required large volumes of CHCl<sub>3</sub> and several days of an analyst's time.

Physical Sample Dissolution: All physical samples processed for plutonium analysis employed Pu-236 tracer for yielding. Tracer additions were similar to those of the biological analyses except where large dilutions were necessary. Heavy soil samples were set aside pending investigation of a partial dissolution procedure. Wet chemistry techniques (using HF) were employed on samples containing small amounts of soil. Filter and sticky film samples were treated with fuming nitric and perchloric to destray organic matter and then with HF to dissolve any silicates present. Physical samples, as biological, were treated with H<sub>2</sub>SO<sub>4</sub>-HClO<sub>4</sub> to assure equilibration of tracer and sample Pu.

Dissolution of the physical samples varied with sample type and size. Generally HF treatment was required to remove silicates and all of the dissolutions were started or transferred to teflon beakers. A brief discussion of those types giving dissolution

problems are listed below (HF disc boiling avoided, prevent U pickup).

- (1) Cassella and Andersen Discs: No special obstacles were encountered until the end of the normal dissolution procedure. A white residue was observed on the surface of some of the discs after removal from the acid dissolver solution and subsequent air drying. The residue was checked for activity but none was apparent. As a precaution, the glass disc was rinsed into the original beaker with a 1N HF-HNO<sub>2</sub> solution which removed all traces of the residue.
- (2) Sticky Films, Method No. 1: The sample was covered with fuming HNO<sub>3</sub> and boiled to low volume. The procedure was repeated until the solution turned from black to a dull red (usually required approximately one liter of fuming HNO<sub>3</sub>). Perchloric acid was added and the mixture boiled to low volume. An exothermic reaction occurring at this point was allowed to go to completion. Further boiling produced a clear solution.
- with fuming HNO<sub>3</sub> and boiled to low volume. The process was repeated 2 or 3 times and the mixture allowed to dry and ignite on the last time. Ignition was encouraged by dropwise addition of fuming HNO<sub>3</sub> and heat. Final dissolution of the carbon black sample was accomplished with addition of HClO<sub>4</sub>. Limited exothermic reaction occurred in this step.
- (4) Sticky Films: Method No. 3: Approximately 5 ml of CH<sub>3</sub>OH was added and the sample ignited with a Fischer burner. Furning HNO<sub>3</sub> and HClO<sub>4</sub> were added after ignition was completed and mixture boiled to low volume. If the sample contained appreciable

amounts of dirt, bumping occurred. Addition of 3 to 5 ml of H<sub>2</sub>SO<sub>4</sub> climinated this bumping in boiling to low volume (some foaming occurred at this point). Finally, HF was added to effect complete discolution of the dirt. This method proved to be the most economical timewise and in consumption of reagent. No loss of sample was evident by activity measurements of filter collections of the fumes.

- (5) Total Air (TAS): These samples were usually dissolved in fuming HNO<sub>3</sub> and charred, followed by a fuming HNO<sub>3</sub>-HClO<sub>4</sub> dissolution. Samples with appreciable amounts of dirt required HF treatments.
- (6) Total Air Disposable (TASD): Samples were relatively bilky and required several acid dissolutions. The samples were treated with fuming  $\mathrm{HNO_3}$  and charred. A sticky ring remained on the wall of the teflon beaker which was dissolved by boiling with  $\mathrm{H_2SO_4}$  and  $\mathrm{HClO_4}$ . Nitric acid and HF were added after the last  $\mathrm{HClO_4}$  reaction and the sample boiled to low volume.
- done almost entirely in teflon beakers due to required HF treatments. Fuming HNO<sub>3</sub> was first added to cover the sample and the sample boiled until yellow fumes were no longer evident (bumping occurs at too low a volume). Perchloric acid was added and the mixture boiled to wet dryness. Little reaction occurs during this step. Fuming HNO<sub>3</sub> was added to cool the mixture and HF added (15 to 25 ml for each 5 gms of soil, 1 ml at a time to control reaction) until low foam is rection subsided. The mixture was boiled until a clear solution was

<sup>\*</sup> Not normal, but backing stuck to filter.

obtained. All the sample except water soluble salts and a trace of hard silica (the latter showed no measurable activity) went into solution after acid boiling. Dilution of the acid solution (250 ml for each 10 cms of soil) dissolved all residues but the hard silica.

(8) Large Soil Samples (>5 gms): The physical samples were of greater variety but generally easier to dissolve than the biologicals with the exception of those containing heavy dirt. All of the soil samples, (approximately 60) received for analyses contained 1 to 6 pounds of dirt and sand. Samples this size can be dissolved with large quantities of acids and a lengthy digestion period. The complicating factor, however, is dissolution of the water soluble salts which precipitate during the acid digestion (salting out process). For example, dissolution of 10 grams (453, 6 gms equal 1 pound of soil) requires an ultimate dilution of 250 ml to dissolve the water-soluble salts. A proportionately greater dilution is needed for larger samples. Obviously, the Pu-239 activity in a workable aliquot of an infinitely large dilution would be barely detectable even on hot samples. It seemed destrable therefore. To develop a method for separating the Pu compounds from the hulk of the soil. Flotation agents were tried on the premise the heavter plutonium bearing particles would separate from bulk soil by gravity centrifugation. The so-called soils, however, apparently had components equal or greater in density to plutonium compounds since 95% of the material was deposited in the bottom of the centrifuge cone. Pernaps the soils were heavy dense volcanic ash,

Following the flotation procedure a tracer and tracer-free partial dissolution of the soils was attempted and the results were highly suc-

cessful. In this method, eight 50 gram samples from Clean Siste II and III soil throwout collections were treated in a manner similar to total dissolutions of small soil samples except the reaction was stopped after approximately one fourth (30 minutes of dissolution time required) of the soil was dissolved. Approximately 50 ml of f-HNO<sub>3</sub> and saturated  $H_3$  BO $_4$  was added and the mixture boiled to wet dryness. Hydrochloric acid additions with boiling were repeated until the HNO, was destroyed. Care was taken to avoid excessive foaming and swelling of the heavy scum which appeared at low volume. The mixture was transferred to a large sized poly bottle with HCl washin' and diluted to the half full mark with H2O. Hydroxylamine -HCl, CHCl<sub>3</sub> and cupierron reagent were added, the mixture stirred vigorously, and centrifuged to separate the phases. Approximately 95% of the now dark CH<sub>3</sub>Cl<sub>3</sub> layer was removed with a transfer pipet, care being taken not to disturb the interface scum. The extraction was repeated until the CHCl3 layer was colorless (usually required 4 to 6 extractions). The extracted collections were evaporated at low heat to a heavy sludge (light flaming occasionally occurred in the sludge). Dilute  $HNO_{\chi}$  (6N) was added to the sludge and the mixture boiled to a heavy black tar. If bumping occurred HCl was added. Nitric acid was added, the mixture boiled to wet dryness, and the procedure repeated with f-HNO, until the tar turned a black liquid. Perchloric acid was added and a resulting slow exothermic reaction allowed to go to completion. The solution was boiled until perchlorate salts precipitated. Most of the salts were dissolved by repeated boiling with aqua regia. Remaining salts were washed with

 $\rm H_2O$  and boiled in fuming HNO $_3$  -HCl. The solutions were combined and diluted to the mark in a volumetric flask with fuming HNO $_3$  and H<sub>2</sub>O.

The residue from each of the partial dissolutions was completely dissolved in a manner similar to that for the small soil samples. Results of the eight samples showed approximately 95% of the plutonium was extracted. Subsequent experiments, however, show that partial dissolution must be restricted to sample sections of 200 gms or less because of dilution and extraction limitations.

bottles. The cap had been sealed with tape but most of the bottles had leaked rather badly. The pH of each sample was determined with a Beckman pH meter. The volume of the sample was measured in a graduated cylinder. All of the samples contained appreciable amounts of algae and dirt. A suspension aliquot of each sample was centrifuged and a stippled plate activity measurement made of each supernate. Aliquots from samples showing activity in the centrifuge supernate were filtered through a millipore filter and the filtrate analyzed by alpha pulse height analysis. The millipore filter was leached with successive additions of 0.1N HCl over a 48-hour period. Each leach was filtered through a new millipore and the filtrate analyzed by 2 TI counting of a stippled plate. The millipore filters from some of the leached samples were dissolved, purified, and analyzed by alpha pulse height analysis.

A separate suspension aliquot of several of the samples was ana—
lyzed by cupferron - CHCl<sub>3</sub> extraction at neutral pH and counted by
alpha spectroscopy.

All the analyses were for plutonium content and some for uranium.

Physical Sample Purification: The majority of the physical samples were purified, following dissolution, in a routine manner by the purification procedure given in Appendix B. Physical Samples with heavy dirt, however, required several cupferron-CHCl<sub>3</sub> extractions and alternate NaOH-Na<sub>2</sub>CO<sub>3</sub> NH<sub>4</sub>OH precipitations to free the plutonium compounds from excessive salt concentrations. In samples containing large amounts of Fe, a brown residue appeared on the resin purification column. This residue was dissolved during HCl elution. A trace of insoluble salts sometimes formed in the purified solution (tentatively identified as aluminum and titanium oxides) but contained no activity.

Electroplating: A rapid electrodeposition procedure was used to obtain from the purified sample a weightless, invisible deposit of plutonium on a platinum disc. A plating time of 10 minutes was usually required. The disc was 5 mils thick with a mirror finish, precut to 2.2 cm in diameter. The electrodeposition cell, designed by our laboratory, limited the plating solution exposure to a glass tower, teflon gasket, and platinum disc.

An excess of solution during the plating operation can result in as much as 70% loss of activity. The optimum volume of the plating solution was found to be approximately 4 ml which represents about 1/4

inch of liquid in the plating cell. In general, those samples having heavy dirt at first produced dirty plates. Changing lab reagents, plating solutions, and re-extracting the sample with hexone just prior to plating did little to improve plate quality. Cupferron -CHCl<sub>3</sub> extraction, baking the water extractant with successive additions of aqua regia, and resin column purification produced clean plates. Dirty plates also occurred when any residual organic material was not destroyed or when extraction was incomplete. Rinsing the plates with distilled water and flaming improved plate quality.

Stippled Plates: All samples with field monitor activity levels above a certain range were dissolved tracer free and a stippled aliquot measured for approximate activity. If the high activity value was confirmed, a dilution was made and tracer added to the aliquot. This prevented mis-match of Pu-239 activity and tracer so that one alpha peak was not swamped by the other in the pulse height spectra.

Odors: Last but not least was the problem of nefarious odors emanating from the dissolved large tissues and especially metabolism samples. Fortunately, the odors from tissues were all but eliminated by HClO<sub>4</sub> type dissolution and H<sub>2</sub>SO<sub>4</sub> refluxing methods. Boil-downs of urine and feces samples, though often produced a pungent odor in the lab. A resourceful chemist purchased a Buddha incense burner, and the resulting atmosphere was satisfactory to everyone's olfactory senses.

<u>Uranium Separation</u>: A uranium separation from plutonium was made in each plutonium analysis by a basic carbonate precipitation which carries plutonium. The uranium carbonate complex is soluble

under these conditions. However, if due to sample impurities, the uranium does not solubilize completely, it will not interfere with the measurement of Pu-239 (5.0 to 5.2 Mev integration limits) in an alpha pulse height analysis since uranium alphas fall at a lower energy. In the procedures outlined, the uranium separated in the plutonium procedure was not used for analysis. The uranium analysis was performed with sufficient sensitivity on another aliquot of the dissolved sample.

Assuming 1  $\mu$ g of natural uranium to be present in a sample containing 10 dpm Pu-239, an unexpectedly high ratio, the following sample activities can be expected:

| Nuclide | cpm  | Alpha Energy      |  |
|---------|------|-------------------|--|
| U-238   | 0.26 | 4,18 Mev          |  |
| U-235   | 0.01 | 4,40 "            |  |
| U-234   | 0.25 | 4.75 "            |  |
| Pu-439  | 3.47 | 5.14 <sup>#</sup> |  |
| Pu-238  | -    | 5,48 "            |  |
| Pu-236  | -    | 5.75              |  |

The closest Pu and U alphas, as is evident, are sufficiently separated in energy.

# 2.5 PREPARATION OF TRACER

The tracer employed in yielding plutonium isotopes is Pu-236 (made by the d, n reaction on highly purified U-235). The Pu-236 was prepared in a cyclotron irradiation and chemically purified at Traceriab. Approximately 20,000 dpm was aliquoted and pulse-height analyzed to determine isotopic purity and percent Pu-239, 240 pres-

ent, if any. Conections to subsequent samples were applied if any Pu-239, 240 was found in the tracer. Previous experience has shown that on high purity Pu-236, the ratio of Pu-239/Pu-236 is about  $1 \times 10^{-5}$ . The importance of any correction depends on the Pu-239, 240 activity in the sample analyzed. Once the purity of the tracer had been established, two stock solutions were standardized at about 400 and 20 dpm/ml. A choice of stock for each enalysis depended on the anticipated activity of the individual sample.

Ionic Pu-236 tracer has shown a tendency to polymerize and/or form oxides on standing or in the presence of trace quantities of organics. This can result in incomplete equilibration with other Pu radioisotopes and loss of yield. Preparation of Pu-236 standards from a concentrated stock solution, therefore, included an HClO treatment to destroy organics and solubilize all tracer activity.

Residual amounts of the acid were left in the standard solutions to hold the tracer in a soluble form.

The tracer was standardized by isotopic dilution and exhaustive electrodeposition. In both methods, a suitable aliquot was withdrawn from stock, electrodeposited on a platinum disc, and counted. In exhaustive electrodeposition the plating solution was reduced in volume and any remaining plutonium again electrodeposited. This process was repeated until further electrodeposition produced no change in disc activity. Summation of the electrodepositions gave the tracer concentration. Four to eight determinations were normally averaged to yield a final value. Concentrations were usually determined to plus or minus 2%.

44

In isotopic dilution a spike of National Bureau of Standards stock solution\* (99.97% pure) was added, for yielding, to nine aliquots of the purified Pu-236 stock solution. The spike and tracer were equilibrated by evaporation with  $\rm H_2SO_4$  and  $\rm HCIO_4$  and electrodeposited on the platinum disc. The plated samples were counted and the Pu-236 concentration calculated after Pu-239 yielding.

Exhaustive electrodeposition gave an average concentration of  $25.0 \pm 0.38$  dpm/ml Pu-236 for four aliquots. Isotopic dilution gave an average of  $25.7 \pm 0.26$  dpm/ml for nine aliquots. Experience has shown that the first method is susceptible to low results due to sequential handling losses. This point has been confirmed by standardization of the tracer using a combination of both techniques on the same aliquots of tracer.

It was anticipated that the Pu-236 tracer might change concentration over a period of time due to a combination of factors, primarily evaporation of the media and/or deposition of the tracer on the walls of the polyethylene storage bottle. To minimize this error, aliquots of the standardized stock solutions were added to several small polyethylene storage bottles and acidified with 6N HCl.

To insure that the accuracy of the tracer standardization was maintained, a set of two exhaustive electrodepositions was performed after five months. (See Tracer Standardization Procedure in Appendix B for method). The set of two platings had to agree within 2.5% and their average within 2% of the previous standardization.

or further platings and/or complete restandardization was necessary.

<sup>\*</sup>An analysis of the NBS standard (listed as 99.97% pure) on our Mass Spectrometer gave the following isotopic composition; 94.386 weight % Pu-239, 5.271 weight % Pu-240, and 0.343 weight % Pu-241. The Pu-239, Pu-240 alpha disintegration rate of the solution was calculated from this data.

# 2.6 ACTIVITY MEASUREMENTS

Counting: Each plutonium sample was electroplated on a S-mil platinum disc (for best peak resolution) and counted on an alpha pulsa height analyzer. The disc was ignited to remove any residual deposit, since resolution decreases proportionately with an increase in deposit thickness. In order to utilize existing equipment, the outputs from four Frisch Grid Chambers were connected to one multichannel analyzer by dividing the full range of the analyzer (255 channels) into quadrants of 64 channels each. The instrument controls were adjusted so that the sixty four channels covered the entire energy range of the plutonium isotopes. The amplifier controls were adjusted to cover the range 4.5 to 6.0 Mev which included Pu-238 (5.49 Mev), Pu-239 (5.15 Mev), and Pu-240 (5.15 Mev) and Pu-236 (5.75 Mev) tracer. This amplifier gain setting gave a scale factor of approximately 37 Kev per channel, and each isotope present was registered over a spread of about ten channels. Optimum gain settings discriminated against activity energies outside the Pu-236, 239 energy region. The result was a pure spectra of Pu-236, 238, 239. Even slightly dirty plates showed minimum straggling in the valley region of the spectrum. Occasionally a small alpha 1 tak from the U-232 decay daughter of the tracer was seen if a sample was recounted several weeks after chemical decontamination. However, the U-232 peak, located at an independent energy, in no way interfered with the analysis. Samples with low yields or poor spectra were reworked.

A disposable metal collimating ring, surrounding each sample

46

CONFIDENTIAL

disc, was used with each sample to preclude the counting of degraded alpha particles. Some loss in counting efficiency resulted but was offset by improved peak contours and distinct separation of alpha energy peaks. The resolution (full width at half-maximum) of the four Frisch-Grid of ambers including disp collimation was 0,88% at 5,15 Mev. The alpha peak counting officiency was approximately 35%.

The counting time for an unknown sample was determined by the isotope having the lowest activity. A total collected count of this isotope which gave a standard statistical counting error of 10% was considered satisfactory. However, if possible, a total collected count giving a standard error of 3% was obtained. The tracer yield was determined to an error of 3%.

Table 2.2 indicates the variables involved in the choice of counting time. Counting times of much greater than 1000 minutes were not economically justified. Also samples with adequate yields snowing no Pu-239activity after 40 minutes of counting time were reported as such with a standard error for the background count of the instrument.

TABLE 2.2 TOTAL COUNTING TIME REQUIRED TO GIVE LISTED

| 1        | ERROR* |       | ٠.    |  |
|----------|--------|-------|-------|--|
| ·        | 3%     | 5%    | 10%   |  |
| Activity | Error  | Error | Error |  |
| 10 cpm   | 111    | 40    | 10    |  |
| 1 "      | 1110   | 400   | 100   |  |
| 0,1 *    | 11100  | 4000  | 1000  |  |

<sup>\*</sup>Background for alpha pulse analyzer is virtually negligible, ranging from 0.006 to 0.01 cpm.

Determinition of Geometry: A geometry factor is used to convert the observed counting rate of an unknown sample to absolute disintegrations per minute (dpm). The geometry factor is defined as the observed corrected counting rate divided by the absolute disintegration rate of a calibrated plutonium standard source. The observed counting rate of a sample always contains the following inherent losses.

- (1) 2 TT Geometry: The geometry is restricted to 2 TT steradians by virtue of a flat disc mounting.
  - 2) Collimation Loss: Described in counting section.

Analysis of Pulse Height Data: A short run of a calibrated plutonium standard source was made before and after the analysis of an unknown plutonium sample. This procedure gave an evaluation of the counting geometry and resolution of the instrument including any channel shirting of the alpha peak, in this interval of time.

After counting a sample, a Pulse Height Graph sheet was used to make a graphical plot of the data as needed. Channel counts on the ordinate were plotted versus channel number and/or energy on the abscissa. From this graph, together with the data tape, an analysis of the isotope peaks was carried out utilizing the attached processing sheet. In selecting the group of channels representing each isotope peak, the following points were considered:

(1) Width of Isotope Peak Base: Since each sotope peak which represents a single alpha particle energy is theoretically of the same contour, its base will cover the same number of channels with only the neight of the peak differing in each base. The peak

contour may be represented approximately by a Gaussian distribution curve as described in the references.

- (2) Low Energy Tail: The low energy tail of each isotope peak will continue down to zero energy. However, no counts less than 1% of the peak height are added to the totalized peak count. The totalized count of the calibrated plutonium standard source is evaluated in the same manner.
- (3) Background: On low counting samples, it is necessary to correct for background. This correction is compiled from a statistical summation of consecutive background determinations and is subtracted empirically in the peak energy region, from a knowledge of the isotopes present and of their peak contours.
- (4) Peak Resolution: The resolution is determined by the width of the peak contour and will determine the possibility of detecting isotope peaks in close proximity. Resolution may be mathematically denoted as the peak width at its mid-height divided by the peak energy, each value expressed in the same energy units. The resolution for selected analysis is calculated in order to determine the amount of instrument drift. The desired resolution was always better than 1.5 percent.
- in peak resolution during an analysis. It is evidenced by a broadening of the peak contour and, in extreme cases, will give rise to excessive peak overlap. The amount of drift will indicate the degree
  of instrument stability during an extended analysis. Repeat analyses
  will be indicated if the amount of drift impairs good peak resolution.

Alpha Spectroscopy Quality Control: The reliability of the sipha pulse height analysis system must be checked periodically regardless of the observed reliability. Day to day standards of instrument of articles are measured by observing the before and after runs of the standards (see counting reference for details). The width and energy location of the standard and sample isotope peaks base must correspond. A drift of more than 1 percent at five Mev between the two is cause for instrument repair.

In addition, a background spectrum must be taken at least once per month (and more often if contamination is suspected). The background, taken in the region of 4.0 to 6.2 MeV, must match the sample isotope peak base, and shall not exceed five counts per hour.

Any excess is reason for determination of the cause of the background and removal of the source.

The counting efficiency of the instrument is checked monthly by counting a caribrated three-peak alpha source containing Pu-237, Am-241 and U-233. The source is counted in the energy region of 4.5 to 5.7 MeV.

The individual peak efficiency is checked by integrating the peaks and comparing with the assigned isotopic dpm values of the source. A divergence of more than 1 percent from the assigned values on subsequent efficiency checks is cause for further investigation and/or maintenance as necessary.

# 2.7 CALCULATIONS

<u>Plutonium Isotopes</u>: The results of the alpha pulse-height analyses are presented on printed tape. A graphical plot of a typical

50

# CONFIDENTIAL

spectrum is illustrated in Figure F.4. The energy calibration line was calculated from the pre-and post-counting energy calibrations of the counting chamber. A summation was made of counts under each isotope peak present. These counts were corrected for low energy tail, background, peak resolution, and instrument drift. The plutonium content of the sample was calculated by:

Plutonium-239 and Pu-240 could not be calculated separately as their alpha energies were too close to resolve with a Frisch-Grid Chamber.

The counting efficiency of each Frisch-Grid Chamber was measured, using a high precision alpha standard, and it was not necessary to calculate a yield separately to determine the plutonium content. However, he yield was always determined as a quality control measure in order to assess the efficiency of the chemistry procedure. The yield was calculated by:

<u>Uranium</u>: The results of the fluorimetric analyses are presented as milliamps on the Jarrell-Ash fluorimeter. Milliamps are converted to  $\mu g \ U_3 O_8 / total$  sample by:

$$U_3O_8$$
 (µg/ total sample) = (Ma sample - Ma bkg.) x Cf % yield x aliquot factor

# CHAPTER 3

# DATA PRESENTATION

# 3.1 DISCUSSION

Tables E.1 through E.13 contain the plutonium and uranium data for the Physical, Biological, and Quality Control Samples. Also included are counting time, yield, and rework information. The tables are a summation of all the bi-waekly reports plus new data generated since the last bi-weekly report. New data are starred. A key to the sample types precedes the tables.

# 3.2 BIOLOGICAL DATA

Tables E.5 through E.7 contain the plutonium and uranium data for the Biological samples. Tables are listed by animal type. The data are listed by tissue type and number. All plutonium values are reported as dpm Pu-239, 240/total sample. All uranium values are reported as  $\mu g U_3 O_8$  total sample. A counting error in dpm was assigned each Pu-239, 240 value and the data presented in orders of magnitude. The error assignment as well as the base value is in terms of the given power. Pertinent information relative to the analysis appears in the remarks column. Zero or negative values were included, accompanied by the counting error; but never was the positive numerical value of the latter less than the negative value. In most instances, the statistical precision of the data meet requirements set by the referee team. In general, most of the yields exceeded 50%. A few samples with low yields were either reworked

52

## CONFIDENTIAL

or counted for longer periods to assure good statistical accuracy.

Uranium data were derived from 10% aliquots and are listed opposite
the Pu-239, 240 value for a given sample.

The dog and sheep data are given for the Double Tracks or Clean Slate

II events, the burro on Double Tracks only. Since exact animal location was not available, no attempt was made to correlate laboratory analytical data with field information. Comparisons were made among tissue types, metabolism samples, animals, and events for Pu and U content as follows:

- (1) Dog Tissues: Most of the Pu was concentrated in the G.I. Tract, lung, trachea, and nasal mucosa. On the average, the G.I. Tract was a factor of approximately  $10^2$  greater than any of the other three tissues. The activity in the four tissues ranged from <1 to1.63  $\times$   $10^4$  dpm. The U concentration in most tissues was less than 1  $\mu$ g per sample and showed little tendency to follow the Pu. For example, the tissue with the highest U value, 2.88 $\mu$ g in the lung of Animal 1020, contained only 3.36 dpm of Pu.
- (2) Sheep Tissues: The Pu was found principally in the trachea, G.I. Tract, Lung, and Nasal Mucosa. In general, where the Pu was distributed among these tissues, it was divided fairly equally. However, more of the lung samples contained appreciable amounts of Pu. Activity values in the sheep tissues mentioned ranged from < 1 to 5.45 x 10<sup>2</sup>. Similarly to the dog samples. U concentration was usually less than 1 μg and did not necessarily follow the Pu. The tissues of three samples, 2050, 2052, 2127, were the highest in uranium but low in plutonium.

- (3) Burro Tissues: Most of the Pu was concentrated in the lungs but appreciable amounts were detected in some liver, hilar node, and G.I. tract samples. Also one bone, kidney, and trachea showed appreciable Pu. The lung-to-liver ratio ranged from near unity in a few samples to 55 in Sample 3043. Very few uran-tum analyses were run on burro tissues. All were less than 1 ug.
- (4) Metabolism samples: All the analyses in this category were performed on sheep eliminations. Most of the metabolism data showed high values relative to the animal tissues. The data ranged from approximately  $10^1$  to  $10^4$  dpm per sample. Neither urine nor feces values necessarily dominated the Pu content of a given animal sample. Uranium analyses were not required of metabolism samples.
- (5) Arimals: The G.I. tract of the dog samples and burro lungs dominated the Pu content of all animal tissues. Uranium data was too low, in most instances, to make a significant comparison among animals. Average values for tissues containing the largest amounts of Pu are given below in Table 3.1 in dpm per sample.
- (6) Event: Only three sheep lung samples from Clean Slate II contained appreciable amounts of Pu. All other large values were in Double Tracks data.

# 3.3 PHYSICAL DATA

Tables E.1 through E.4 contain the plutonium and uranium data for the physical samples. Tables are listed by event. The data are listed by sample position in the test pattern with corresponding

TABLE 3.1 ANIMAL TISSUES WITH GREATEST PU CONTENT

|              | <u>Do</u> g          | Sheep                | Burro 2.0 x 10 1 *     |
|--------------|----------------------|----------------------|------------------------|
| Bonc         |                      |                      |                        |
| Kidney       |                      |                      | $3.6 \times 10^{1*}$   |
| Liver        |                      |                      | $5.3 \times 10^1$      |
| Lung         | $4.8 \times 10^{1}$  | $9.0 \times 10^1$    | $5.52 \times 10^2$     |
| Hilar Node   |                      |                      | 5.6 x 10 <sup>1*</sup> |
| Trachea      | $2.4 \times 10^{2*}$ | $2.2 \times 10^{1*}$ | $1.7 \times 10^{14}$   |
| G.I. Tract   | $2.7 \times 10^{3}$  | $2.4\times10^2$      | $3.2 \times 10^{14}$   |
| Nasal Mucosa | $9.8 \times 10^{1}$  | $1.6 \times 10^{2*}$ |                        |

<sup>\*</sup>Based on one or two analyses only. All other values average of several analyses.

TLW collection and analysis number. Pretest and offsite data appear at the end of each table. The statements concerning data reporting and counting precision under the previous section apply to the physical data. Yields were rarely below 60% except for a few samples with heavy dirt. Uranium analyses were performed on aliquots to 10% of the sample and are listed opposite their Pu-239, 240 counterparts. Pertinent information relative to the analysis is footnoted. The ratio of Pu-239, 240 by radiochemical analysis to the field monitor value is given in the last column. To be meaningful, any radiochemical or field monitor value from 0-to-1 dpm/total sample was arbitrarily assigned a 1-dpm value for the ratio calculation. In such instances, the ratio was preceded with a computer approximate sign (CA).

The field positions of physical samples were well documented and an attempt was made to correlate some of the data by event as follows:

- (1) Doubletracks: In general, deposition contours determined from radiochemical analyses of aluminum collectors and deposition films agreed with those established by alpha field surveys. A moderate amount of activity was detected, however, outside the contour of the P and R arcs as far as Station 068 on the right side. The Casella and Andersen disc numbers showed mixed results with regard to their internal system. In some instances, the plutonium content decreases progressively with successive stages, but often the second and third stages have values higher than the first. Uranium-toplutonium ratios were somewhat erratic and were higher than expected The uranium content does not follow the plutonium in many cases, particularly in values from far out arc locations. Radiochemical-tofield monitor plutonium ratios were within a factor of unity in general with deviation orders of magnitude in either direction for many analyses. Particularly noticeable were the high ratios of some aluminum collectors and deposition films.
- deposition films and agreed in general with contours from alpha survey readings. Moderate activity appeared outside the contour on Arc H as far as Stations 024 on the left and 038 on the right. The Casella's and Andersen's showed most of the activity to be concentrated in the first impactor stage followed by a decrease of activity with successive stages. Uranium-to-plutonium ratios were erratic, but, in general, lower than those in the Double Tracks event. Radio-chemical-to-field monitor plutonium ratios were usually within a factor of unity. A few exceptions were apparent, but orders of

magnitude deviations were much less frequent than in Double Tracks.

- (3) Clean Slate II: Deposition contours determined from Arcs B to L deposition films and aluminum collectors are consistent with alpha survey readings. Deposition data from Arcs E and F showed moderate activity outside the contour at stations 014 and 090 respectively. Activity data from the Casella's and Andersen's resembled that of the Clean Slate I event. Also uranium-to-plutonium ratios were similar to those of Clean Slate I. Radiochemical-to-field monitor plutonium ratios were similar to Clean Slate I.
  - (4) Clean Slate III: Deposition contours were determined from Arcs B to L deposition films and were consistent with alpha survey readings. Moderate activity appeared outside the contour on Arc B as far as Station 100. The Casella and Andersen data followed the pattern of Clean Slate I and II.

Uranium-to-plutonium ratios were similar to those of Clean Slate I and II. Radiochemical-to-field monitor plutonium ratios were consistent within a factor of five of unity, except in Arcs E to L and some soil fractions, both of which contained values ranging from 2 to 500.

#### 3.4 MISCELLANEOUS DATA

Estimated Activity Expenditure: Table E.8 contains a data listing, by arc location, of estimated plutonium activity losses of project 2.6C "A" samples. "A" samples refer to those Casella's and Andersen's whose first and second stages were combined for particulate analyses—and later transferred to this project for radiochemical analysis. Therefore, to obtain a better value for the

"A" samples, each value in Table E.8 should be added to its counterpart in Tables E.1 to E.5.

Distilled Water Samples: Tables E.9 through E.11 contain the plutonium and uranium data for the distilled water samples. Tables are listed by event and data by arc location. All Pu values are given as dpm/total sample volume. In general, leach filtrate values decreased with successive leaches except for the last leach which spanned a greater time period. Particularly interesting, with respect to plutonium solubility, are the high values for aliquots in which Pu was extracted at neutral pH. The residues of five glass bottles in which water samples were stored were found to cor.sin 1 to 22% of the activity of the original contents.

Tracer Standardization: Table F.12 lists the results of isotopic dilution and exhaustive plating analyses of solutions containing Pu-239 and/or Pu-236. Good agreement among analyses is apparent from the standard deviation column.

#### 3.5 CONTROL DATA

Biological: Table E.13 contains Roller Coaster plutonium quality control data listed by Rochester collection number with corresponding TLW analysis number. All the data are reported as dpm

Pu-239, 240/total sample. Also included are yield and counting time for each analysis. The samples were blanks or spiked samples, and the data indicate the latter since few show less than 99 dpm/total sample.

Table E.14 contains TLW internal plutonium and uranium quality control data listed by TLW analysis number and sample type.

All the data, excepting three Pu values, are near the detection limits of the measuring instrument. The base values for the three

exceptions show less than 1 cpm and are not considered significant.

Simulated blanks of beef liver and hamburger were analyzed, early
in the program, for plutonium content and found to contain less
than 1 dpm. The data was not recorded since it provided little
useful information.

Physical: Table E.15 contains Roller Coaster plutonium control data listed by arc location with corresponding TLW collection and analysis number. All values are the results of investigation of sample aliquoting by partial dissolution—extraction methods or analyses of solutions forwarded by the Roller Coaster analyses team. All the data are reported as dpm Pu-239, 240/total sample for soil samples and dpm/ml for solutions. Partial dissolution would appear to a valid procedure based on the small amounts of activity left in the residue. The solution activity range from 0.01 to 4.84 x 10<sup>3</sup> dpm/ml.

Table E.16 contains TLW internal plutonium and uranium quality control data listed by TLW analysis number and sample type.

All the laboratory blanks were near the detection limits of the measuring instrument. Analysis of a sample (previously analyzed in our mass spectrometer) for Pu-239, 240 content, using our low and high level Pu-236 standards, reconfirmed the Pu-236 standardization values. Mass spec values are given for comparison in the remarks column.

## 3.6 DATA SUMMATION

Biological: Table E.17 contains a tabulation of all the biologi-

cal analyses. Data are listed by animal and tissue type. A total of 744 plutonium and 87 uranium analyses had been performed at the conclusion of the project.

Physical: Table E.18 contains a tabulation of all the physical analyses. Data are listed by event and sample type. A total of 2607 plutonium and 598 uranium analyses had been performed at the conclusion of the project.

## CHAPTER 4

## CONCLUSIONS AND LABORATORY RESULTS

# 4.1 CONCLUSIONS

The conclusions on the data generated in 5.2/5.3b projects are limited to sample processing and surface inspection of the results, since, in regard to the latter, it is the function of the evaluation team to inverpret the significance of the data. The following are applicable to our projects:

- (1) All samples received for analysis have been inventoried and accounted for.
- (2) Adequate procedures for sample processing and accurate analysis were developed.
- (3) Facilities and personnel were fully utilized to maintain the desired production schedule.
- (4) The requirements of the referee team were not unduly restrictive and have been met in most instances.
- (5) Tracer techniques were employed and found to be highly satisfactory.
- (6) Most of the plutonium in the tissue biological samples was concentrated in the G. I. Tracts of the dogs and lungs of the burros. Metabolism samples from sheep eliminations ranged from approximately  $10^1$  to  $10^4$  dpm per sample.
  - (7) Double Tracks animals showed higher Pu content than Clean

Slate II animals. Only three sheep lung samples from Clean Slate II contained appreciable amounts of plutonium.

- (8) Plutonium data of the physical samples is fairly consistent with that of alpha field surveys and field monitor values with some deviations noted.
- (9) Uranium values are erratic in some instances and do not necessarily follow the plutonium values.
- (10) Casella and Andersen samples are fairly consistent in showing an activity decrease with successive stages. Deviations are occasionally noted in the second and third stages where values are higher than expected.

## 4.2 LABORATORY RESULTS

The results listed below pertain to our laboratory experiment with the biological and physical samples. Several improvements were made and others are suggested.

- (1) Biological samples were difficult to identify since fluids from the animal had often obscured the writing on the paper-type tag. The sample should be doubly wrapped in poly bags by sealing the sample in one bag and covering with another. The outside bag should then be labeled with a Dymo punch. The double bag would also prevent samples from freezing together, necessitating complete thawing before processing.
- (2) Many of the samples were heavy in iron content and a rapid method for removing this element was needed. Experiments with a nitrated ion-exchange column resulted in a procedure superior to hexone extraction in all phases.

- (3) The large biological samples usually required a lengthy thawing period before they could be cut, even with an electric knife. It is desirable to eliminate the thawing process entirely since it consumes an analyst's time; a special heating setup is required, spread of contamination is a risk, and overpowering odors develop. An electrically heated knife is now on the market and all reports indicate it would cut the frozen samples easily.
- (4) The urine samples were collected on Kimpac, which contained large amounts of dirt. The dirt seems to have an affinity for the plutonium in the urine, and extraction procedures had to be employed to obtain a good yield. A method of collection to eliminate the dirt would be desirable.
- (5) Several samples had to be reworked to obtain better yields. At first, all the tailings were scavenged for missing plutonium; however, experience showed 95% of this activity was always in the aqueous discard of the first extraction. It is not economically feasible to spend time scrounging for the remaining 5%.
- (6) The biological samples occupied relatively large amounts of space and had to be kept in a frozen state over a long period of time. An oversized, walk-in freezer, adequately lighted, is recommended for easy access to samples and sequential handling.
- (7) Fluorimetric analysis for uranium may be performed directly on the dissolved sample. However, experience has shown quenching occurs if the sample is not chemically pure. Three extractions at the start, to remove interfering ions, is recommended.

- (8) Uranium, as plutonium, is lost during chemical processing and should be yielded. Use of U-233 tracer, or analysis, in duplicate with one part containing a spike of uranium standard is suggested. The latter was employed in this project.
- (9) Acid dissolutions in large volume are extremely corrosive to all types of metal hoods and exhaust systems. Even coating the metal with an acid resistant paint is only a temporary cure. Several other types of hoods and blowers have been investigated since the start of the project, and a polypropylene system with an internal scrubber appears to offer the best performance. Resistance to normal hot plate temperatures and all acids, including HClO<sub>4</sub>, is touted by vendors of these hoods and blowers. The scrubber system is needed to remove noxious acid fumes and to wash out potentially explosive collections of nitrate and perchlorate dust mixtures. A movable safety shield should be installed in each hood, wit above normal ventilation, to remove the copious quantities of acid fumes being generated.
- (10) Near the midpoint of the project a computer program was developed to incorporate additional information such as samples, yields, counting times, etc. This method of reporting provided for rapid transscription of new data to tabular form, reducing the delays of typing, proofreading, and copying. It is recommended to institute the computer program at the start to save the typing effort.
- (11) The bonus benefit of the cupferron CHCl<sub>3</sub> portion of partial dissolution procedures may be its application to water and urine analyses. The cupferron CHCl<sub>3</sub> extraction process, primarily independent of sample pH, may be the best method for determining soluble plutonium content of a water-algae-dirt solution.

- the validity of the data. A plate which has a scum on it, is bent, scordined, or scratched may distort the alpha spectrum to a point where the results are marginal. In addition to the radiochemical purification techniques mentioned earlier, it was determined that good plate quality most often resulted from proper flaming. The plate should be thoroughly washed with triple distilled H<sub>2</sub>O and flamed at high temperature over a Fischer burner for two minutes and the process repeated once. Flaming with methanol is not desirable, as it will sometimes produce plates with a white scum.
- (13) Dissolution of the biological samples as rapidly as possible is recommended since freezer failure is always a possibility. Samples can be stored for purification at a later date.
- (14) In future projects of this type, it might be expedient to analyze biological samples in order of animal number and physical samples by arc location. This should reduce the many man hours that were expended in cross referencing animal numbers and arc locations with TLW field and analysis numbers.
- (15) Near the end of the project an opportunity arose to compare plutonium spectra of platinum with stainless-steel-mounted samples. Two hundred stainless steel plutonium mounts were counted, using collimation and a plutonium standard mounted on stainless. In general, the stainless mounts showed well defined peaks but a broader base, indicating a loss of resolution. Also, the Pu-236 and Pu-239 alpha peaks of the stainless samples occurred at a lower energy, showing a 3 to 7 channel shift downward for each isotope.

(16) The final measurement in the radiochemical analysis for Pu-239 is taken from the alpha spectrum of the electrodeposited sample. The sample Pu-239 and Pu-238 activity must be matched to the Pu-236 tracer to prevent interference between peaks.

In tracer techniques for Pu-239 analysis, the accuracy of the results are only as accurate as the standardization of the Pu-236 tracer. It is recommended that the value of cpm per dpm per unit volume of tracer be accurately and precisely determined, for the detector to be used in obtaining alpha spectra of the final sample plates. It is also recommended that specifications be set up for quality control and preventative maintenance procedures for the detector and electronic equipment; and methods of spectra interpretation. These should be rigidly designed to assure good resolution of the alpha puaks. Detector backgrounds should be rigidly controlled at a predetermined level by frequent detector background runs and limiting the total amount of activity allowed in the detector. Recounting or rework of the sample should be done, as required, to adhere to the specifications.

# APPENDIX A DETAILED LOCATION OF PHYSICAL STATIONS

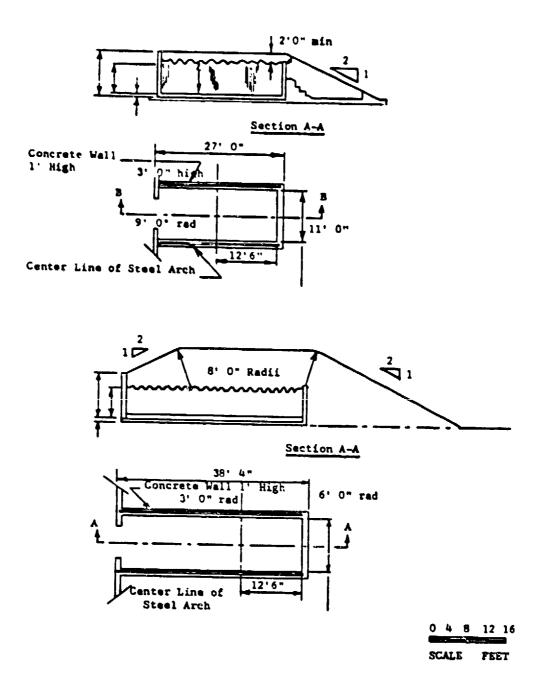
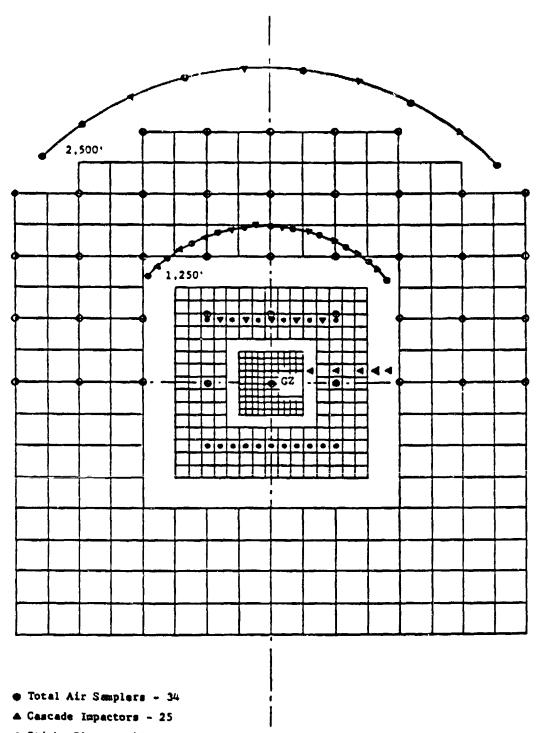




Figure A.1 Clean State igloos.

67



Sticky Plates - 40

Figure A.2 Fixed syrface instrument array (-2,000 to +2,500 feet).

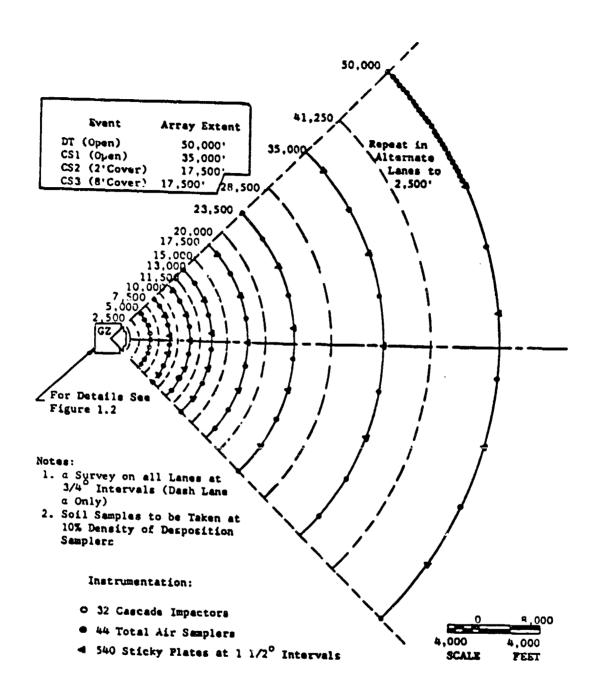



Figure A.3 Fixed surface instrument array (+ 2,500 to + 50,000 feet).

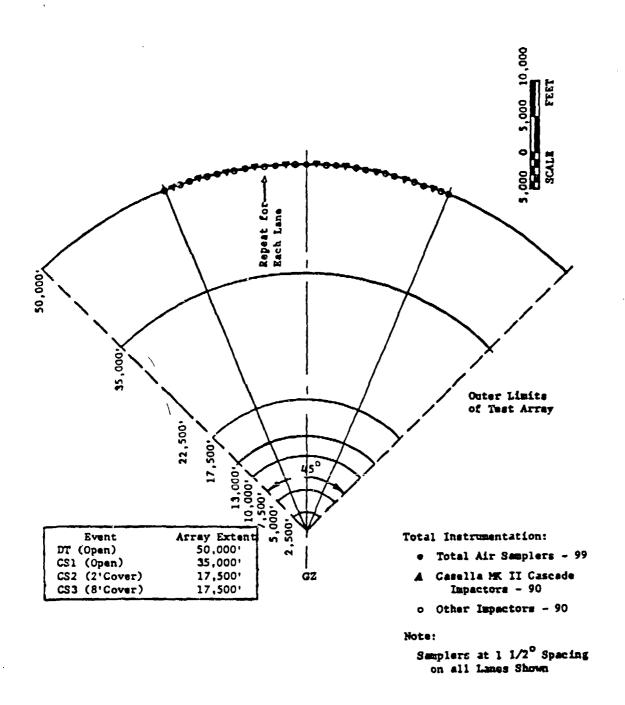



Figure A.4 Movable surface instrument array (+ 2,500 to + 50,000 feet).

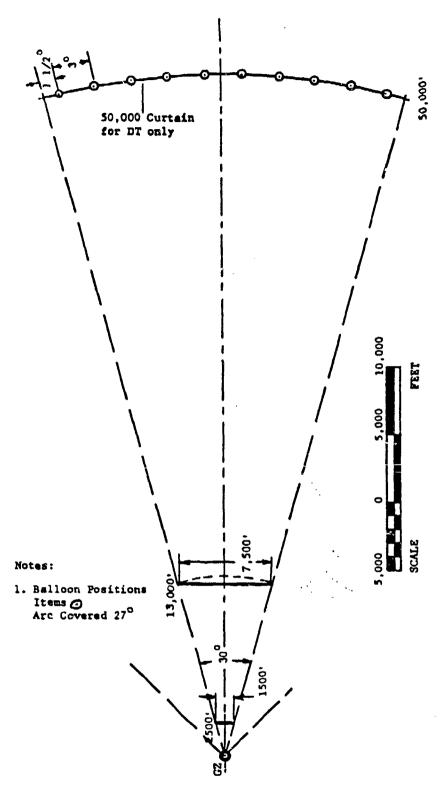



Figure A.5 Movable balloon-supported instrument array.

# CONFIDENTIAL

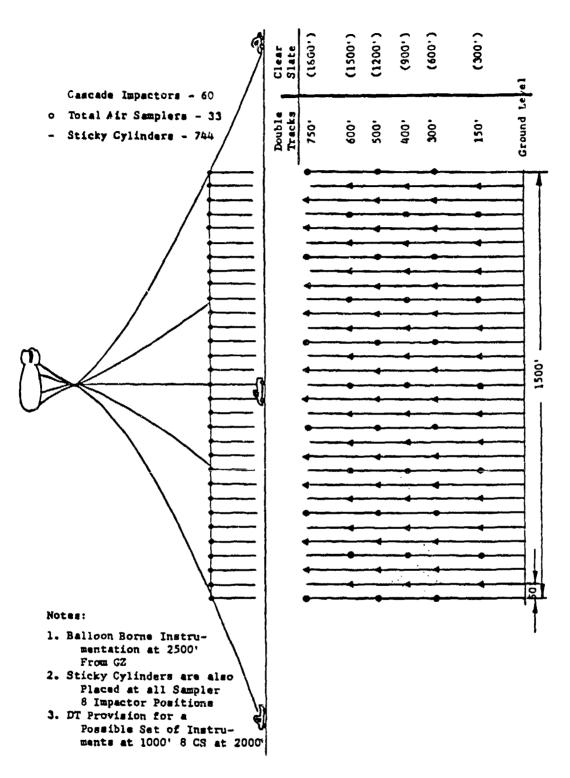



Figure A.6 Details of balloon curtain at 2,000-foot radius.

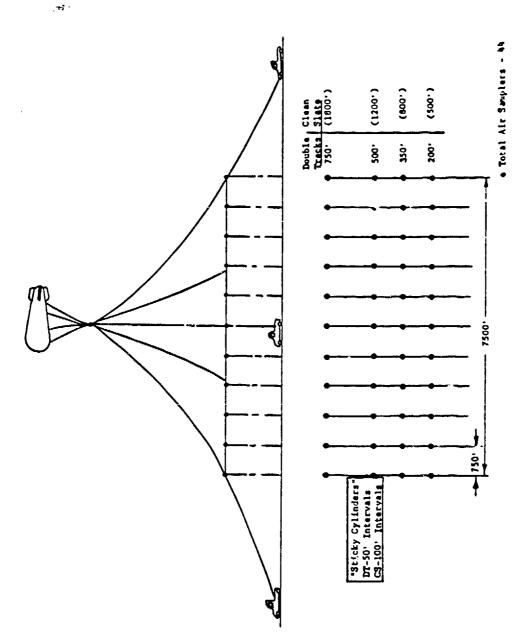



Figure A.7 Details of balloon curtain at 13,000-foot radius (never operable).

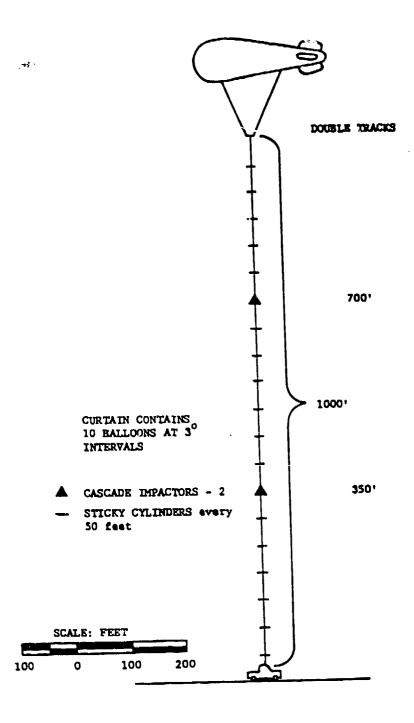



Figure A.8 Details of balloon curtain at 50,000-foct radius.

# APPENDIX B RADIOBIOLOGICAL, RADIOCHEMICAL, AND PHYSIOCHEMICAL PROCEDURES FOR PU<sup>239</sup>, PU<sup>240</sup>, AND URANIUM IN VARIOUS SAMPLES

## Pu-239 DISSOLUTION PROCEDURE

CASELLA

IMPACTOR DISC

- l. Place Casella impactor glass disc in an appropriate size teflon beaker (Note a).
  - a. If the sample monitors <4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6NHNO3, a small aliquot is pipetted into a 40ml centrifuge cone, and an appropriate amount of tracer is added.
- 2. Add enough furning HNO3 to wet all of the sample. Heat on a hot plate until the sample has dissolved.
- 3. Remove from hot plate and add about 6 ml 78 percent HClO4 for every 100 ml fuming HNO3 added in step 2. Heat on hot plate until exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of fuming HNO3, pouring acid carefully down wall of beaker (note b).
  - h. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Remove the glass disc with teflon forceps and rinse with  $1N \ HNO_3$   $1N \ HF$  adding washings to teflon beaker (note c).
  - c. If a white residue remains on the disc, rinse twice more with the <u>IN HNO<sub>3</sub>-IN HF</u> solution adding washings to teflon beaker. If the sample does not contain any insoluble material at this point omit steps 5 through 8.
- 5. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable

75

IMPACTOR DISC\*

amounts of dirt, repeat HF treatment at least once.

- 6. Add 4 ml saturated H<sub>3</sub>BO<sub>3</sub> and boil for 3 minutes.
- 7. If residue remains, wash with portions of warm 6N HNO, until it dissolves.
- 8. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6, and 7.
- Transfer the solution to a 40-ml centrifuge cone and proceed with step
   1 Pu-239 Purification Procedure.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 Purification Procedure.

FILTER\*

- Place the sample or aliquot in a suitably sized pyrex beaker (note a)
  or teflon beaker if sample is small.
  - a. If the sample monitors < 4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO<sub>3</sub> a small aliquot is pipetted into a 40 ml centrifuge cone, and an appropriate amount of tracer is added.
- Add enough furning HNO<sub>3</sub> to wet all of the sample. Heat on a hot plate until the sample has dissolved.
- 3. Remove and add about 10 ml 78 percent HClO<sub>4</sub> for every 100 ml fuming HNO<sub>3</sub> added in step 2. Heat on hot plate until an exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of fuming HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Transfer the contents of the beaker to a teflon beaker (note c) by means of a transfer pipet. Wash the beaker with several 6N HNO<sub>3</sub> washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3-ml aliquots of 1N HNO<sub>3</sub> ~ 1N HF.
  - c. If started in teflon, omit step 4 but add a few ml HNO<sub>3</sub>. If the sample does not contain any insoluble material at this point, omit steps 5 through 8.
- 5. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 6. Add 4 ml saturated H<sub>2</sub>BO<sub>2</sub> and 8 ml HNO<sub>3</sub> and boil for 3 minutes.
- 7. If residue remains, wash with portions of warm 6 N HNO3 until it dissolves.

- 8. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6, and 7.
- 9. Transfer the solution to a 40-ml centrifuge cone and proceed with step 1
  Pu-239 Purification Procedure.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-Z39 Purification Procedure.

SAMPLER DISC\*

- Place Andersen sampler glass disc in an appropriate size teflon braker (Note a).
  - a. If the sample monitors <4000 alpha cpm, add Pu-239 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO<sub>3</sub>, a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- Add enough fuming 103 to wet all of the sample. Heat on a hot plate until the sample has dissolved.
- 3. Remove from hot plate and add about 6 ml 78 percent HClO<sub>4</sub> for every 100-ml furning HNO<sub>3</sub> added in step 2. Heat on hot plate until exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of furning HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- Remove the glass disc with teflon forceps and rinse with 1N HNO<sub>3</sub> 1N HF adding washings to teflon beaker (note c).
  - c. If a white residue remains on the disc, rinse twice more with the lN HNO<sub>3</sub> - lN HF solution adding washings to teflon beaker. If the sample does not contain any insoluble material at this point omit steps 5 through 8.
- 5. Add 10-ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 6. Add 4 ml saturated H3BO3 and 8 ml HNO3 and boil for three minutes.
- 7. If residue remains, wash with portions of warm Aqua Regia until it dissolves.

- ð. Transfer any undissolved residue to the teflon beaker quantitatively with  $\mathrm{HNO}_3$  washes and repeat steps 5, 6, and 7.
- 9. Transfer the solution to a 40 ml centifuge cone and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- Place the sample or aliquot in a suitably sized pyrex beaker (note a)
  or teflon beaker if sample is small.
  - a. If the sample monitors <4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO3 a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- Add 1/3 volume furning HNO<sub>3</sub>, boil to dryness, and char. Repeat until
  only small amount of carbon is left (the sample will dissolve but not decompose in furning HNO<sub>2</sub>).
- 3. Remove from hot plate and add about 6 ml 78 percent HClO<sub>4</sub> for every 100-ml furning HNO<sub>3</sub> added in step 2. Heat on hot plate until exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of furning HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of furning HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Transfer the contents of the beaker to a tellon beaker (note c) by means of a transfer pipet. Wash the beaker with several 6N HNO washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3-ml aliquots of 1N HNO = 1N HF
  - c. If started in teflon, omit step 4 but add a few ml HNO<sub>3</sub>. If the sample does not contain any insoluble material at this point, omit steps 5 through 8.

- 5. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 6. Add 4 ml saturated  $H_3BO_3$  and 8 ml  $HNO_3$  and boil for 3 minutes.
- 7. If residue remains, wash with portions of warm 6N HNO3 until it dissolves.
- 8. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6, and 7.
- 9. Transfer the solution to a 40-ml centrifuge cone and proceed with step 1 Pur239 Purification Procedure.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H2O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-29 Purification Procedure.

- Place the sample or aliquot in a suitably sized pyrex beaker (note a) or teflon beaker if sample is small.
  - a. If the sample monitors < 4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6 N HNO<sub>3</sub> a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- Add 1/3 volume furning HNO<sub>3</sub>. Boil on a hot plate to dryness and char.
   Repeat once and take up in 1/3 volume furning HNO<sub>3</sub>.
- Remove from hot plate and add about 10 ml 78 percent HClO<sub>4</sub> for every 100 ml fuming HNO<sub>3</sub>. Heat on hot plate until an exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of fuming HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of furning HNO<sub>3</sub> becoming exhausted and can be remedied by addition of more acid.
- 4. After the reaction has subsided, add 5 ml H<sub>Z</sub>SO<sub>4</sub> and 10 ml HNO<sub>3</sub>.

  Boil to wet dryness and repeat. Take up with 10 ml furning HNO<sub>3</sub>.

  Repeat the evaporation and take up with another 10 ml of furning HNO<sub>3</sub>. Boil solution to approximately 5 ml (note c).
  - c. If insoluble sulfates are present transfer solution to a centrifuge cone and centrifuge. Save the supernate and wash the residue with 6N HCl. Add the washings to the supernate. Discard the residue.
- 5. Transfer the contents of the beaker to a teflon beaker (note d) by means of a transfer pipet. Wash the beaker with several 6N HNO<sub>3</sub> washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3 ml aliquots of 1N HNO<sub>3</sub> 1N HF.

- d. If started in teflon, omit step 5 but add a few ml HNO<sub>3</sub>.
  If the sample does not contain any insoluble material at this point, omit steps 6 through 9.
- 6. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 7. Add 4 ml saturated H<sub>3</sub>BO<sub>3</sub> and 8 ml HNO<sub>3</sub> and boil for 3 minutes.
- 8. If residue remains, wash with portions of warm 6N HNO<sub>3</sub> until it dissolves.
- 9. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>2</sub> washes and repeat steps 6, 7, and 8.
- 10. Transfer the solution to a 40-ml centrifuge cone and proceed with step 1 Pu-239 Purification Procedure.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-259 Purification Procedure.

- Place the sample or aliquot in a suitably sized pyrex beaker (note a)
  or teflon beaker if sample is small.
  - a. If the sample monitors < 4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6№ HNO<sub>3</sub> a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- Add enough furning HNO<sub>3</sub> to wet all of the sample. Heat on a hot plate until the sample has dissolved.
- 3. Remove from hot plate and add about 6 ml 78 per cent HClO<sub>4</sub> for every 100 ml furning HNO<sub>3</sub> added in step 2. Heat on hot plate until exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of furning HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Transfer the contents of the beaker to a teflon beaker (note c) by means of a transfer pipet. Wash the beaker with several 6N HNO3 washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3 ml aliquots of 1N HNO3 1N HE.
  - c. If started in teflon, omit step 4 but add a few ml HNO<sub>3</sub>. If the sample does not contain any insoluble material at this point, omit steps 5 through 8.
- Add 10-ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable

AIR SAMPLER

amounts of dirt, repeat HF treatment at least once.

- 6. Add 4 ml saturated H<sub>3</sub>BO<sub>3</sub> and 8 ml HNO<sub>3</sub> and boil for 3 minutes.
- If residue remains, wash with portions of warm 6N HNO<sub>3</sub> until it dissolves.
- 8. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6, and 7.
- Transfer the solution to a 40-ml centrifuge cone and proceed with step
   Pu-239 Purification Procedure.

<sup>\*</sup>If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 Purification Procedure.

<sup>\*\*</sup>The sequential tape is cut into equal sections. In order to monitor the various sections, unroll the tape carefully and pass the exposed side under a sensitive lab detector. Record on the chemical processing form activity levels and/or physical spots on the tape. Cut the tape into appropriate sections.

- Place the sample or aliquot in a suitably sized pyrex beaker (note a) or teflon beaker if sample is small.
  - a. If the sample monitors <4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO<sub>3</sub>, a small aliquot is pipetted into a 40-ml centrifuge cone and an appropriate amount of tracer added.
- Add 3 ml CH<sub>3</sub>OH, ignite, and cover be ker with a speedy vap. After burning is completed, cover residue with fuming HNO<sub>3</sub> and boil to wet dryness.
   Repeat the fuming HNO<sub>3</sub> evaporation step. Take up in approximately
   1/4 volume fuming HNO<sub>3</sub>.
- 3. Remove and add about 10 ml 78 percent HClO<sub>4</sub> for every 100 ml fuming HNO<sub>3</sub> added in step 2. Heat on hot plate until an exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of fuming HNO<sub>3</sub>, pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Transfer the contents of the beaker to a teflon beaker (note c) by means of a transfer pipet. Wash the beaker with several 6N HNO<sub>3</sub> washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3 ml aliquots of 1N HNO<sub>3</sub> 1N HF and heat on hot plate.
  - c. If started in teflon, omit step 4 but add a few ml HNO<sub>3</sub>. If sample does not contain any insoluble material at this point, omit steps 5 through 8.

COLLECTOR

- 5. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 6. Add 4 ml saturated H<sub>3</sub>BO<sub>3</sub> and 8 ml HNO<sub>3</sub> and boil for 3 minutes.
- 7. If residue remains, wash with portions of warm 6N HNO<sub>3</sub> until it dissolves.
- 8. Transfer any undissolved residue to the teflon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6 and 7.
- Transfer the solution to a 40-ml centrifuge cone and proceed with step
   Pu-239 Purification Procedure.



<sup>\*</sup> if uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 Purification Procedure

#### A-Filtered Aliquot

- 1. Determine the pH of the sample with a Beckman pH meter.
- 2. Pipet a 25-ml aliquot of the clear liquid onto a millipore filter and allow the solution to drain thoroughly into an appropriate container. Do not wash the filter.
- 3. Pipet 1 ml of the filtrate into a 40-ml centrifuge cone and save, for the determination of uranium.
- 4. Add an appropriate amount of tracer to remaining filtrate.
- 5. Add 10 ml HNO<sub>3</sub> and 1 ml HClO<sub>4</sub> and boil to HClO<sub>4</sub> fumes. Cool and transfer to a 40-ml tube. Proceed with step 1 of Pu-239 Purification Procedure.

#### B-Excepted Aliquot

- 1. Stir the sample and pipet a representative 25-ml alique into a 16-ounce plastic bottle. Adjust the pH slightly with NH<sub>4</sub>OH to offset the acidity (6N) of the tracer in the next step.
- 2. Add an appropriate amount of tracer to the sample aliquot.
- 3. Proceed with step 1 of Extraction Procedure using 5 ml neutralized NH<sub>2</sub>OH· HCl and 25 ml CHCl<sub>3</sub> portions for extractions.

#### C-Total Sample

 Pour sample into a large teflon beaker and wash the container with H<sub>2</sub>O adding washing to the beaker. Add an appropriate amount of tracer.

WATER S

- Boil to low volume and add 150 ml fuming HNO<sub>3</sub> and 25 ml HClO<sub>4</sub>.
   Boil to HClO<sub>4</sub> fumes.
- 3. Add 50 ml fuming HNO<sub>3</sub> and 10 ml HF. Boil to low volume and add
  1 to 2 ml sat. H<sub>3</sub>BO<sub>3</sub> and 10 ml HNO<sub>3</sub>. Boil to approximately 5 ml and
  transfer to 40-ml centrifuge cone. Proceed to step 1 of Pu-239
  Purification Procedure.

### D-Glass Bottle Decontamination

- Rinse the container from Part C, above, three times with hot Aqua Regia and pour the washing into a large teflon beaker.
- 2. Rinse the bottle with 1 N HNO<sub>3</sub> 1 N HF adding the rinse to the Aqua Regia wastes. Rinse with H<sub>2</sub>O and add washes to beaker.
- Add an appropriate amount of tracer, then proceed with step 2, part C
   above.

#### E-Millipore Filter

- 1. Remove the millipore filter from Part A above, or Part G below, carefully with forceps and place in a small teflon beaker. Add an appropriate amount of tracer.
- Add 75 ml of furning HNO<sub>3</sub> and 15 ml HClO<sub>4</sub>. Boil to HClO<sub>4</sub> fumes and proceed with step 3, Part C above.

#### F-Centrifuge Supernate

1. Stir the sample and pipet approximately 25 mlinto a 40-ml centrifuge cone.

- Centrifuge and pipet 1 ml of the supernate onto a labelled stainless
  steel disc and evaporate to dryness under a heat lamp.
- 3. Place in metal container and submit for 2 T counting.

## G-Leached Supernate

- 1. Stir the sample and quickly pipet a 25-ml aliquot onto a millipore filter and allow the supernate to drain thoroughly into an appropriate container.
- 2. Remove the filter with forceps, place in a beaker containing a measured volume of 0. 1N HCl. Stir intermittently for a measured period and pour the solution onto a fresh filter and catch the filtrate in another container.
- 3. Repeat step 2 combining filters for measured periods up to 48 hours.
- 4. Pipet a 250 haliquot from each filtrate fraction onto a labelled stainless steel disc and evaporate to dryness under a heat lamp.
- 5. Place in a metal container and submit for 2 T counting.
- 6. Pipet a 1-ml aliquot, from selected filtrate fractions, into a 40-ml centrifuge cone and save for uranium analysis.

<sup>\*</sup>If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone and proceed with step 1 Pu-239 Purification Procedure.

- Add sample to a suitably sized teflor beaker (note a). Add 30 ml HF and
  10 ml HNO<sub>3</sub>. After initial exothermic reaction has ceased, boil to dryness
  (or until spattering starts).
  - a. If the sample monitors < 4000 alpha cpm, add Pu<sup>236</sup> tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6NHNO<sub>3</sub> a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- 2. Repeat HF treatment until no change in the sample crud is perceived.
- 3. Add 30 ml HClO<sub>4</sub>, 10 ml HNO<sub>3</sub>, and 10 ml HF. Boil to strong fumes of HClO<sub>4</sub>. Remove from hot plate and cool.
- 4. Rinse down the sides of the beaker with 6NHNO3, add 3 ml H3BO3 and boil to low volume. Take up in 6NHNO3 and heat gently.
- 5. If a residue is still present, centrifuge, add 20-ml portions of 6NHNO3 to residue and warm. (Watch for bumping!) Combine washings and supernate if all residue has dissolved (note b).
  - b. A residue which persists will sometimes dissolve with repeated Hot Aqua Regia treatment (maximum 3). If this treatment fails, put sample into a flask and add 1/3 volume furning HNO<sub>3</sub>. Add H<sub>2</sub>O and shake vigorously, venting flask periodically.
- If residue still remains, centrifuge, and repeat steps 2 through 5 on the residue (note c).
  - c. A trace of hard silica final remains for some samples. The amount of activity associated with this residue was found to be insignificant.

COLLECTOR+

7. Transfer the solution from step 5 to a centrifuge cone and proceed with step 1 of Pu-239 PURIFICATION PROCEDURE.

\*If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H.O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transger to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

93

CONFIDENTIAL

- Add sample to a suitably sized teflon beaker. Rinse container with IN

  HNO<sub>3</sub> HF and add to sample (note a.) Add 20 ml HF for each 5 grams of soil.

  After initial exothermic reaction has ceased, boil to dryness (or until spattering starts).
  - a. If the sample monitors <4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alph cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO<sub>3</sub>, a small aliquot is pipetted into a 40 ml centrifuge cone, and an appropriate amount of tracer is added.
- 2. Repeat HF treatment until no change in the sample crud is perceived.
- 3. Add 30 ml  $\rm HClO_4$ , 10 ml  $\rm HNO_3$ , and 10 ml HF. Boil to strong fumes of  $\rm HClO_4$ . Remove from hot plate and cool.
- 4. Rinse down the wall of the beaker with 6N HNO<sub>3</sub> and Sat.  $H_3BO_3$  and boil to low volume. Take up with 50 ml HCl and boil with repeated additions until HNO<sub>3</sub> is gone (note b).
  - b. Avoid low volume, as excessive foaming and swelling will occur.
- 5. Cool and transfer the solution to a poly bottle (250 to 500 ml depending on the sample size) and proceed with step 1 Pu-239 EXTRACTION PROCEDURE.

<sup>\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- 1. Remove the sample from its polyethylene bag and place in a 600 to 800-ml beaker. Rinse the plastic bag with HNO3 and add the washings to the beaker.
- Pipet an appropriate amount of Pu-236 tracer and add enough HNO<sub>3</sub> to cover the sample. Heat gently and boil the solution to a small volume.
- 3. Gool the solution and add 50 ml fuming nitric and 50 ml HGlO<sub>4</sub>.
  Heat gently until the vigorous exothermic HGlO<sub>4</sub> reaction starts.
  Remove the beaker from the hot plate and allow the reaction to go to completion.
- 4. Fume the solution to a small column and transfer to a centrifuge cone.
- 5. Centrifuge and decant the supernate into the dissolution beaker.

  Leach and decant the residual sand several times with hot HNO<sub>3</sub>.

  Centrifuge each leach, combining supernates (note a).\*\*
  - a. Save the residue for extraction of residual plutonium in the event of a low sample yield.

SAMPLES \*

- 6. Evaporate the combined supernates to a small volume and continue with step 1 Pu-239 PURIFICATION PROCEDURE (note b).
  - If heavy insoluble salts occur after evaporation proceed with step 1 Pu-239 EXTRACTION PROCEDURE \*\*.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution into an appropriate volumetric flask, and dilute carefully to the mark with H,O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 Purification Procedure.

<sup>\*\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H2C. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- 1. Add sample to a suitably sized tellon beaker (note a). Add 30 ml HF and 10 ml HNO3. After initial exothermic reaction has ceased, boil to dryness (or until spattering starts).
  - a. If the sample monitors < 4000 alpha cpm, add Pu<sup>236</sup> tracer aliquot before adding sample. If > 4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6NHNO<sub>3</sub> a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of trace. is added.
- 2. Repeat HF treatment until no change in the sample crud is perceived.
- Add 30 ml HClO<sub>4</sub>, 10 ml HNO<sub>3</sub>, and 10 ml HF. Boil to strong fumes
  of HClO<sub>4</sub>. Remove from hot plate and cool.
- 4. Rinse down the sides of the beaker with on HNO3, add 3 ml H3BO3 and boil to low volume. Take up in 6N HNO3 and heat gently.
- 5. If a residue is still present, centrifuge, add 20-ml portions of 6NHNO<sub>3</sub> to residue and warm. (Watch for bumping!) Combine washings and supernate if all residue has dissolved (note b).
  - b. A residue which persists will sometimes dissolve with repeated hot Aqua Regia treatment (maximum 3). If this treatment fails, put sample into a flask and add 1/3 volume fuming HNO<sub>3</sub>. Add H<sub>2</sub>O and shake vigorously, venting flask periodically.
- If residue still remains, centrifuge, and repeat steps 2 through 5 on the residue (note c).
  - c. A trace of hard silics final remains for some samples. The amount of activity associated with this residue was found to be insignificant.

7. Transfer the solution from step 5 to a centrifuge cone and proceed with step 1 of Pu-239 PURIFICATION PROCEDURE.

\*If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- Add sample to a suitably sized tation beaker. Rinse container with 1N  $_{7}HNO_{3}$ - HF and add to sample (note a.). Add 20 ml HF-HNO $_{3}$  for each 5 gms of soil. After initial exothermic reaction has ceased, boil to cryness (or until spattering starts).
  - If the sample monitors <4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO a small aliquot is pipetted into a 40-ml centrifuge cone, and an appropriate amount of tracer is added.
- Repeat HF treatment until no change in the sample crud is perceived.
- 3. Add 30 ml HClO<sub>4</sub>, 10 ml HNO<sub>2</sub>, and 10 ml HF. Boil to strong fumes of HClO<sub>4</sub>. Remove from hot plate and cool.
- Rinse down the sides of the beaker with  $6N \text{ HNO}_3$  and Sat.  $H_3BO_3$  and boil to low volume. Take up with 50 ml HCl and boil with repeated additions until HNO<sub>3</sub> is gone (note b.).
  - b. Avoid low volume as excessive foaming and swelling will occur.
- Cool and transfer the solution to a poly bottle (250 to 500 ml depending on sample size) and proceed with step 1 Pu-239 EXTRACTION PROCEDURE.

<sup>\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H2O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- 1. Place the sample or aliquot in a suitably sized pyrex beaker (note a) or teflor beaker if sample is small.
  - a. If the sample monitors < 4000 alpha cpm, add Pu-236 tracer aliquot before adding sample. If >4000 alpha cpm, the dissolution is done tracer free, the solution diluted to an accurate volume to obtain a final acidity of 6N HNO<sub>3</sub> a small aliquot is pipetted into a 40 ml centrifuge cone, and an appropriate amount of tracer is added.
- 2. Add enough furning HNO<sub>3</sub> to wet all of the sample. Heat on a hot plate until the sample has dissolved.
- 3. Remove and add about 10 ml 78 percent HClO<sub>4</sub> for every 100 ml fuming HNO<sub>3</sub> added in step 2. Heat on hot plate until an exothermic reaction begins. Remove beaker from hot plate and allow reaction to proceed, controlling it by the addition of 1 to 10 ml portions of fuming HNO<sub>3</sub> pouring acid carefully down wall of beaker (note b).
  - b. At times the reaction ceases and the solution turns black. This is caused by the supply of fuming HNO<sub>3</sub> becoming exhausted and is remedied by addition of more acid.
- 4. Transfer the contents of the beaker to a teflon beaker (note c) by means of a transfer pipet. Wash the beaker with several 6N HNO<sub>3</sub> washes, scrubbing the sides and bottom with a polyethylene policeman. Perform at least two washes with 3 ml aliquots of 1N HNO<sub>3</sub> 1N HF.
  - c. If started in tellon, omit step 4 but add a few ml HNO<sub>3</sub>. If the sample does not contain any insoluble material at this point, omit steps 5 through 8.
- 5. Add 10 ml HF and evaporate to wet dryness. Do not allow sample to bake dry at any time during the procedure. If sample contains appreciable amounts of dirt, repeat HF treatment at least once.
- 6. Add 4 ml saturated  $H_3BO_3$  and 8 ml  $HNO_3$  and boil for 3 minutes.
- 7. If residue remains, wash with portions of warm 6N HNO, until it dissolves.

CONFIDENTIAL

WIRE SWIPE \*

- 8. Transfer any undissolved residue to the teilon beaker quantitatively with HNO<sub>3</sub> washes and repeat steps 5, 6, and 7.
- 9. Transfer the solution to a 40-ml centrifuge cone and proceed with step 1 Pu-239 Purification Procedure.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 PU-239 Purification Procedure.

- Flace the sample in an appropriate corningware oven dish, cover and dry at 1100 C overnight. Transfer dish to a muffle furnace and ash at 600°C overnight.
- Remove, cool, and grind the bone ash with a glass stirring rod or pettle.
- Dissolve the pulverized ash in concentrated HCl at low heat on the hot 3. plate (note a).
  - If more than a trace of insoluble material is present, the following \*tep\* must be performed.
    - (1) Decant solution into a beaker. Transfer solid residue to a platinum dish. Evaporate to dryness under a heat lamp.
    - (2) Add at least 3 times the amount of residue) solid Na CO. Fuse at .900°C in a muffle furnace for 10 minutes.
    - (3) Dissolve in HCl and transfer to sample beaker. Continue with step. 5.
- 4. Transfer the solution to a poly bottle(2 liter acid bottle for large bones). with a transfer pipet.
- Wash the crucible with hot concentrated HCl and add washings into the 5. bottle.
- 6. Proceed with step 1 of the Pu-239 EXTRACTION PROCEDURE.

<sup>\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H.O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- Remove the frozen sample from its polyethylene bag and place in a small (250 to 400 ml) beaker. Rinse the plastic bag with HNO<sub>3</sub> and add the washings to the beaker.
- Pipet an appropriate amount of Pu-Z36 tracer and add enough HNO<sub>3</sub> to cover the sample. Heat gently and boil the solution to a small volume.
- 3. Cool the solution and add 50 ml fuming  $\mathrm{HNO}_3$  and 50 ml  $\mathrm{HClO}_4$ . Heat gently until the vigorous exothermic  $\mathrm{HClO}_4$  reaction starts. Remove the beaker from the hot plate and allow the reaction to go to completion.
- 4. Fume the solution to a small volume and transfer to a centrifuge come.
- 5. Proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

<sup>\*</sup> If uranium analysis is required, transfer the sample, after dissolution, into an appropriate volumetric flask and dilute carefully to the mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrique cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- Remove the frozen sample from its polyethylene bag and place in an appropriate size beaker. Rinse the plastic bag with HNO<sub>3</sub> and add the washings to the beaker.
- Add an appropriate amount of Pu-236 tracer and enough HNO<sub>3</sub> to cover the sample. Heat gently and boil the solution to a low volume.
- 3. Cool and add enough H<sub>2</sub>SO<sub>4</sub> to raise the level of solution in the beaker to approximately 1 inch. Heat gently until a vigorous reaction starts, then remove from the hot plate until the reaction subsides.
- 4. Fume this solution (black liquid) to a small volume and heat with HNO<sub>3</sub> until the solution turns red and finally clears. Add fuming HNO<sub>3</sub> and HClO<sub>4</sub> and fume to a small volume. Add H<sub>2</sub>SO<sub>4</sub> and fume to low volume to drive off the HClO<sub>4</sub> (note a).
  - a. HClQ forms explosive mixture with cupferron-CHCl3 reagent, added later to extract plutonium and uranium from precipitated salts, and must be removed.
- 5. Cool, transfer the solution to a poly bottle (250 to 500 ml depending on sample size), and proceed with step 1 of the Pu-239 Extraction Procedure.

<sup>\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-m1 centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

ORGANIC TISSUE .

- 1. Remove the frozen sample from its polyethylene bag and allow it to thaw for a few minutes under a heat lamp. If the sample shape or size is such that it will not fit in the bottom half of a four-liter beaker, cut the sample into appropriate sections and place each section in a separate beaker. Rinse the plastic bag with HNO<sub>3</sub> and add the washings to the beaker.
- 2. Add enough H<sub>2</sub>SO<sub>4</sub> to completely cover the sample. Pipet an appropriate amount of Pu-236 tracer (within a factor of five of the expected sample activity but a minimum of 15 dpm) into each beaker and add approximately 5 grams K<sub>2</sub>SO<sub>4</sub> and 2-3 drops Hg metal. Spray the sample with Dow-Corning Anti-foam A silicone defoamer.
- 5. Attach the stem of an inverted 6-inch funnel to a ring stand and clamp and lower the funnel mouth into the beaker. Secure a few inches above the sample.
- 4. Digest the sample gently with low heat until a black tarry mixture is obtained. Increase the heat gradually and reflux until the mixture is a clear solution. The tarry mixture will turn to a black jelly, black liquid, red liquid, and finally, a clear solution. Raise or lower the funnel during dissolution to control the reflux action. Wash down any carbonaceous material on the beaker and funnel walls with H<sub>2</sub>SO<sub>4</sub>.
- 5. Evaporate the  $\rm H_2SO_4$  until salts start forming. Remove the funnel and add  $\rm HNO_3$  cautiously to cool the solution. If the sample had been divided into

sections for the dissolution, combine the sections into one beaker and evaporate to low volume. Cool, transfer the sample with water to a 2-liter acid bottle, and proceed with step 1 Pu-239 EXTRACTION PROCEDURE.

<sup>\*</sup> If uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40-ml centrifuge cone, and proceed with step 1 Pu-239 PURIFICATION PROCEDURE.

- l. Place the sample in a 4-liter beaker, rinsing the container with H<sub>2</sub>O and HNO<sub>3</sub>. Add an appropriate amount of Pu-236 tracer.
- Cover the beaker with a speedy-vap and boil to wet-dryness on a hot plate. Cover the sample with HNO<sub>q</sub> and boil to low volume.
- 3. Add 100 to 200 ml furning HNO<sub>3</sub> and cautiously evaporate the solution to wet dryness (note a).
  - a. At near dryness, ignition occurs and the residue carbonises.
- 4. Cool and rinse the speedy-vap and the sides of the beaker with approximately 100 ml HNO<sub>3</sub>. Add 75 ml and HGlO<sub>4</sub> and fume the mixture to dense HGlO<sub>4</sub> fumes to destroy residual organic matter.
- 5. Add 200 ml H<sub>2</sub>SO<sub>4</sub> and fume the mixture to low volume to drive off all the HClO<sub>4</sub>. Gool and transfer to a 2-liter acid bottle.
- 6. Continue with step 1 Pu-239 Extraction Procedure.

<sup>\*</sup> If Uranium is required, withdraw a representative aliquot after dissolution and spike it with a known amount of standardized Uranium (duplicate the extraction procedure with this aliquot). Transfer the remaining sample into a volumetric flask after extraction, and dilute to mark with H<sub>2</sub>O. Pipet an appropriate aliquot into a centrifuge cone and save for uranium analysis. Evaporate the remainder of the volumetric solution to low volume, transfer to a 40 ml centrifuge cone, and proceed with step 1 Pu-239 Purification Procedure.

- Transfer the mounted Plutonium sample to a small teflon beaker. Add
   ml fuming HNO<sub>3</sub> and 10 ml HF and boil to low volume.
- 2. Remove disc with tesson forceps and rinse with 1 N HNO<sub>3</sub> 1 N HF adding washes to beaker.
- Dry the disc under a heat lamp and check for residual activity. Repeat stripping process if significant activity is detected.
- 4. Boil solution to wet dryness, add 10 drops of H<sub>3</sub>BO<sub>3</sub> and 2 ml HNO<sub>3</sub>, and boil to wet dryness.
- 5. Transfer the sample to a glass beaker with 6 N HNO3 and proceed with step 4 of the Pu-239 Purification Procedure.

- 1. Dilute the sample (note a) contained in poly or acid bottle, to 2/3 volume with H<sub>2</sub>O. Add an appropriate amount of Sat. NH<sub>2</sub> OH. HCl and CHCl<sub>3</sub> (note b). Stir at high speed with a mechanical stirrer for a few minutes. Add 50 to 100 ml 6% cuplerron reagent and stir again at high speed for 5 minutes.
  - a. The sample solution must be in approximately 1N HCl free of  $NO_3$ . Boil solution in HCl if necessary and dilute with  $H_2O$ .
  - b. Large tissues 100 ml Sat. NH<sub>2</sub> OH · HCl, 150 ml. CHCl<sub>3</sub>

    Medium tissues 50" " " " 100 ml. "

    Large Soils 10" " " 50 ml. "

    Small Soils 5" " " " 25 ml. "
- 2. Centrifuge to separate the phases. Add a few drops of aerosol solution to reduce foaming between layers. Transfer the CHCl<sub>3</sub> phase, using a transfer pipet to a 400-ml beaker. Repeat the extraction, without the addition of more cupferron, until the CHCl<sub>3</sub> phases are colorless.
- 3. Boil the CHCl<sub>3</sub> collections to low volume, (approximately 3 ml) and allow the contents to cool. Rinse the walls of the beaker with HNO<sub>3</sub> and boil to approximately 3 ml. Repeat the rinse with fuming HNO<sub>3</sub> and boil to low volume (avoid dryness) (note c).
  - c. Repeat furning HNO<sub>3</sub> cycle for soil samples until solution turns a clear red color.

- 4. Add 25 ml furning HNO<sub>3</sub> z 25 ml HClO<sub>4</sub>. Cautiously heat until an exothermic HClO<sub>4</sub> reaction begins. Remove the beaker from the hot plate and allow the reaction to go to completion.
- 5. Fume the HClO<sub>4</sub> to low volume (note d). Gool the solution and transfer with water washes to a centrifuge cone.
  - d. A white residue often appears at this point in large bone samples. Repeat the extraction in this event.
- 6. Continue with Step 1 Pu-239 PURIFICATION PROCEDURE.

- 1. To the sample contained in a centrifuge cone, add 10 mg Fe<sup>+ 3</sup> unless the sample is known to contain that much. Digest in a hot water bath for 10 minutes and carefully add 19N NaOH (pellets may be required if the volume is too large) until the solution is basic (note a). Add 3 ml saturated Na<sub>2</sub>GO<sub>3</sub> and digest in a hot water bath 10 minutes. Centrifuge and decant supernate to waste. Dissolve the precipitate in HNO<sub>3</sub> and dilute to approximately 15 ml.
  - a. Do not make the solution too basic, as Fe is amphoteric.
- Make the solution basic with NH<sub>4</sub>OH and digest the precipitate in a hot water bath for 10 minutes. Centrifuge and decant the supernate to waste. Wash the precipitate twice with 10-ml portions of H<sub>2</sub>O containing 1 drop NH<sub>4</sub>OH.
- Dissolve the precipitate in a minimum of HNO<sub>3</sub> and add 5 ml 6N HNO<sub>3</sub> (note b).
  - b. An insoluble brown precipitate sometimes persists if iron is present in excess. However, during the HCl column additions in steps 5 and 6 this precipitate dissolves, changing from brown to blue green. Addition of more HCl finally destroys the blue green color.
- 4. Prepare a 100 to 200 mesh Dowex 1-X 10 resin column by adding approximately 1/2 inch of resin to a tubulated glass column, 12 mm I.D. and 85 mm in length, containing a Dacron wool plug at the bottom. Insert another plug at the top and precondition the column with 10 ml 6N HNO3.
- 5. Pour the solution from step 3 onto the column. Wash the centrifuge tube with 20 ml 6N HNO3, followed by 10 ml HCl and add the washings to the column.
- 6. Allow the column to drain and elute the plutonium into a 50-ml beaker with 30 ml of freshly prepared HCl-NH<sub>4</sub>I (approximately 50 mg NH<sub>4</sub>I per 30 ml HCl).

- 7. Evaporate the elute to approximately 2 ml and add 2 ml HNO<sub>3</sub> to destroy I.
  Add 3 ml HClO<sub>4</sub> and evaporate to wet dryness. Repeat with 5 ml Aqua
  Regia.
- 8. Take up the residue in 1 ml HCl and evaporate to dryness. Do not bake. Rotate the beaker to insure complete dryness. Add 2 ml HCl, boil to 1 ml and transfer to a prepared electroplating cell (note c). Rinse the beaker with two 1/2-ml HCl washes and one 1/2-ml water wash. Transfer each wash to the plating cell (note d) and proceed with step 1 of Pu-239 ELECTROPLATING PROCEDURE.
  - film by rinsing several times with acetone and alcohol.

    Write the sample identification on the back of the disc.

    Ignite to red heat in a Fisher burner flame. The electroplating cell must be clean and free of any foreign material. Check for leakage before use.
  - d. Keep the plating solution at minimum volume during this transfer and also during the titration.

112

- Add drop methyl red indicator. Add NH<sub>4</sub>OH dropwise until the indicator shows the solution to be basic (yellow). Add 2N HCl dropwise until the solution is just acid. Add 1 drop in excess.
- 2. Place the sample on a Sargent-Slomin electrolytic analyzer. Adjust the rotating anode to approximately 1/4 inch above the platinum disc. Plate for 20 minutes at a starting current of 2.5 amp and approximately 5 volts. The current may fluctuate during the plating period. Check occasionally and adjust the current to maintain 2.6 amp throughout the plating operation.
- 3. At the end of the electroplating period, add 1 ml NH<sub>4</sub>OH. Stir for 15 seconds. Turn off the current and stirrer. Remove the anode from the plating solution.
- 4. Immediately transfer the plating solution into the beaker used for evaporation. Rinse the inside of the plating cell 3 times with water washes. Combine the washes with the plating solution in the beaker.
- 5. Dismantle the plating cell and remove the platinum disc. Rinse with alcohol and ignite the disc to red heat.
- Place disc in a lined and labeled tin box and submit for alpha pulse height analysis.

- 1. Divide the aliquot set aside for uranium determination into two equal portions, and transfer to an appropriate glass beaker. Add an appropriate uranium spike (for yielding) to one portion (note a).
  - a. If the aliquot is taken from a cupferron-CHCL<sub>3</sub> extraction sample, do not spike or divide it. Analyze concurrently with the aliquot spike prior to extraction.
- Evaporate the solution to low volume and dilute to 5 ml with 2N HNO3:
   Transfer to a centrifuge cone and saturate with NH4NO3 crystals.
- Add 10 ml hexone and stir at high speed for 5 minutes. Transfer the hexone layer to a fresh centrifuge cone.
- 4. Repeat step 3 twice with 5-ml additions of hexone and combine organic phases.
- Scrub the hexone phase twice with a saturated solution of NH<sub>4</sub>NO<sub>3</sub> to remove Pu and other heavy elements and discard aqueous phase.
- 6. Back extract the uranium twice with two 5-ml additions of water and transfer the aqueous phases to a 50-ml glass beaker. Boil to wet dryness, add 5 ml Aqua Regia, and boil to wet dryness. Repeat Aqua Regia step (note b).
  - b. Aqua Regia destroys residual hexone and NH<sub>4</sub>NO<sub>3</sub> which may be carried through the back extraction.
- Take up solution in 6N HNO<sub>3</sub> and proceed with step 1 Fluorimetric Determination of Uranium (note c).
  - c. If the fluorimetric analyses is delayed, store the solution in concentrated HNO<sub>3</sub>.

- 1. Evaporate the sample to 1 ml and transfer to a platinum fusion dish

  (note a ) resting on a Nichrome wire screen-ring holder. Evaporate
  the sample to dryness under a heat lamp.
  - a. The fusion dishes are formed from satin finish 90% Pt-10% Ir alloy discs (0.015 inch thick by 0.748 ± 0.001 inch diameter) in a special forming die (0.750 inch diameter). The new dishes are cleaned by boiling in a 1-to-1 mixture of H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> and then rinsed thoroughly in water and distilled water. They are then fused twice with NaF-LiF flux and washed before their initial use.
- 2. Start a blast burner and by regulation of the air supply, stabilize the flame to 800°C. Position the dish holder above the flame, add 1/2 gm NaF-LiF Flux (note b) to the dish and ignite to a bright red heat for 3 minutes (note c). Allow to cool in place for 15 minutes and transfer to a 12-hole uranium dish container. Transfer the dish to a calibrated Jarrell-Ash fluorimeter (note d), within 2 hours and record the milliamps. Convert reading to μ gram per total sample using a calibration curve (note e) and calculation factors.
  - b. The flux powder from which pellets are formed for fusion is composed of 98% NaF-2% LiF mixed intimately. This is made up in one-pound batches in order to insure uniformity in day-to-day use. A satisfactory bath of flux will show 0.010 µg or less per 0.5-gram pellet. The purest NaF available gives 0.003 µg. The pellets are formed in a TLW pellet-maker, fabricated from

pyrex glass, and adjusted to deliver a 0.50 ± 0.01 grain pellet. The pellet-maker is gently pressed for about ten times into the flux powder container, and a spatula is used to flatten the bottom of the pellet.

- c. The flux will melt within one minute if the flame is correctly adjusted and the fusion is continued for three minutes after the last of the flux has melted. At the end of the fusion, turn off the air and gas simultaneously.
- d. The Jarrell-Ash fluorimeter is operated and maintained according to the supplied manual. To prepare for a series of readings, push the receptacle slide to the front stop. The instrument reference source is now under the ultraviolet light and the meter circuit is switched to the 0.001 scale. The voltage is adjusted so as to give a reading of 100 divisions. Adjust the reference to zero and enter blank and read. Remove blank, enter sample, and record reading. Check reference reading between each sample and zero if necessary. Record all necessary data.
- e. The fluxometer is calibrated prior to sample analysis and daily thereafter. The initial calibration is performed by analyzing 100  $\lambda$  spikes of standardized uranium solutions. The standard uranium solution used for spiking and standard measurement ranges from 0.050 to 8.24  $\mu$ g U<sub>3</sub>O<sub>8</sub> ml. These concentrations are alrequoted to allow readings on the fluorimeter to be made on the 0.001-1 scale. A calibration curve is plotted from the scale

116

readings. Blanks with the multiplier phototube operating at about 400 volts. show a typical reading as follows:

Scale

0.001

Instrument standard set on 100 div.

Blank:

0.019 divisions or

0.006 ME

Daily calibrations are performed by analyzing 100 % spikes of 0.973 and 1.46  $\mu$ g  $U_3O_8$  per ml standardized granium solutions. If the initial and daily calibration curves are mismatched a new calibration curve is prepared as in Step 2.

3. Remove the dish from the fluorimeter and discard the fluoride pellet.

Clean the disc by boiling once in 0.1N HCl, twice in H<sub>2</sub>O<sub>1</sub> and fusing with NaF-LiF flux. Repeat acid and we er treatment, rinse with H<sub>2</sub>O<sub>2</sub> and place disc face down on a clean paper towel to dry. The disc is now ready for the next sample.

<sup>\*</sup> The sensitivity of this method is 0.001 µg of UpO2. Reproducibility is approximately 5%.

The production of Pu-236 is accomplished by deuteron bombardment of U-235 in an accelerator by the following reaction:

U-235 (d, n) Np-236

Np-236 22 hr Pu-236

In order to obtain Pu-236 free of Pu-238 and Pu-239, the U-235 must be 99+ percent pure.

The deuteron energy should be between 12 to 17 mev. The target is

U-235 foil about 200 mg/cm<sup>2</sup> thick and with an area of approximately 1 inch
square, depending on beam size. This is about one gram U-235.

After bombardment, the Np-236 is allowed to decay and Pu-236 milked off by appropriate chemical procedures.

Since fissionable material is being irradiated, the target must be sandwiched with aluminum foil. It is desirable to have a scaled target containing an inert atmosphere and naving its own water cooling lines.

The surrounding foil means a deuteron energy of about 25 mev is required, this being degraded by the foil to the 12 to 17 mev range.

118

- 1. When a new stock of Pu<sup>236</sup> is received, transfer the solution to a 50-ml lusteroid cone and add ~5 mg La and ~5 mg Fe .
- 2. Make the solution basic with NH4OH. Let stand 3 minutes and centrifuge. Wash the hydroxides with 10 ml water. Discard the supernate and wash. Dissolve the hydroxide in 3 drops of HNO3.
- 3. Dilute to 10 ml with water. Heat the solution for 3 minutes on a 75° C water bath. Add 20 mg NaHSO3 a little at a time, to insure complete reduction. Continue to heat for 5 minutes. Add 10 drops HF with stirring, and heat for a few minutes. Cool and centrifuge. Wash the LaF3 with 2 ml 1N HC1-1N HF. Discard the supernate and wash.
- 4. Slurry the LaF3 in 1 ml saturated H3BO3 and heat on a 750 C water bath for a few minutes. Add I ml HCl and I ml water and continue to heat on the water bath to obtain a clear solution. Dilute to 10 ml with water, Add~2 mg Fe<sup>+3</sup>.
- 5. Repeat steps 2, 3, and 4. Do not add Fe to the repeated step 4.
- 6. Add NH4OH to precipitate La(OH) . Digest in a hot water bath for a few minutes. Centrifuge, and wash the precipitate with 5 ml water containing I drop NH4OH. Discard the supernate and wash.
- 7. Dissolve the La (OH)3 in 1 ml HCl and 2 drops HNC3. Heat the solution for 3 minutes in a hot water bath. Cool the solution in an ice bath, and saturate with HCl gas. Allow to come to room temperature.
- 8. Transfer the solution to a prepared Dowex AG 1-X8 (100 to 200 mesh) column. Prepare an eluting solution containing 15 ml HCl and 1/2-ml HNO3. Rinse the tube with several 1-ml portions of this solution. Transfer these washes to the column. Wash the column with the

- remaining solution in 2-ml portions. Wash with 15 ml HCl in 2-ml portions. Discard the effluents and washes.
- 9. Prepare an eluting solution containing 20 ml HCl and 75 mg NH<sub>4</sub>1. Elute the Pu from the column into a 50-ml beaker with 2-ml portions of this solution, allowing the first 2-ml portion to pass through. Add the second 2-ml portion and plug the top of the column with a piece of pressure-sensitive tape for 5 minutes. Remove the tape and continue to elute in 2-ml portions. Pass through 6 ml of HCl in 2-ml portions.
- 10. Evaporate the solution in the 50-ml beaker just to dryness with addition of HNO, in order to drive oif all iodine. Take up the activity in 6N HCl. Transfer the activity to a polyethylene bottle using 6N HCl washes. Add sufficient 6N HCl to give a concentration of ≈3000 dpm per ml.
- 11. Transfer the contents of the 3000 dpm per ml concentrated stock solution to an appropriate size glass beaker. Add 10 mg Fe 3, 4 ml H<sub>2</sub>SO<sub>4</sub>, and ~2 ml HClO<sub>4</sub>. Evaporate to SO<sub>3</sub> fumes.
- 12. Wash the sides of the beaker with HCl and evaporate to near dryness. Take up in 1-2 ml HCl and transfer to a 40-ml centrifuge cone with H,O+HCl washes.
- 13. Ppt Fe(OH), with NH4OH and centrifuge. Wash ppt with H2O containing a few drops NH4OH and centrifuge. Dissolve the Fe(OH)3 in a few drops HNO3 and dilute to 5 ml with 6N HNO3. Add ~1/2-ml saturated NaBrO3 solution.
- 14. Warm on hot water bath a few minutes. Saturate the solution with NH<sub>4</sub>NO<sub>3</sub> crystals, add 5 ml hexone and stir with a mechanical stirrer 3 minutes. Repeat hexone extraction twice adding Sat. NaBrO3 and more NH4NO3 crystals as necessary.

- 15. Wash the hexone phases by stirring with 5-ml 6N HNO3 for 1 minute and discard the washes. Back extract the Pu with three 5-ml additions of 0.1N HNO3. Transfer the aqueous phase to a 50-ml glass beaker.
- 16. Add 10-ml HCl and boil to wet dryness. Repeat HCl addition and evaporation twice. Take up with 10-ml 6N HCl. Transfer contents to 250-ml poly buttle, and dilute to 250 ml with 6N HCl.
- 17. Add one ml of Con HClO<sub>4</sub> and cap tightly. The activity value should be~4.4 x 10<sup>3</sup> dpm/ml. Label R. C. Pu<sup>236</sup> Master Stock Solution.
- 18. Pipet exactly 10 ml of the R.C. Pu<sup>236</sup> Master Stock Solution into a 2000-ml volumetric flask and add 10 ml Con HClO<sub>4</sub>. Dilute to the mark with 6N HCl.
- 19. Transfer the solution (not quantitatively) into eight clean, dry 250-ml poly bottles and cap tightly. The activity value should be 22 dpm/ml in each poly bottle. Label R.C. Pu<sup>236</sup> Low Level Stock Solution. Circle caps and bottles with green label on tape.
- 20. Pipet exactly 200 ml of the R.C. Pu<sup>236</sup> Master Stock Solution into a 2000-ml volumetric flask and add 10 ml HClO<sub>4</sub>. Dilute to the mark with 6N HCl.
- 21. Transfer the solution (not quantitatively) into eight clean, dry 250-ml poly bottles and cap tightly. The activity value should bew440 dpm/ml. Label R. C. Pu<sup>236</sup> High Level Stock Solution. Circle caps and bottles with red label on tape.

- Pipet 1 ml each of R.C. Pu<sup>236</sup> Low Level and High Level Stock
   Solution into an electroplating cell (usually process duplicate aliquots).
   Add 1/2 ml HCl.
- 2. Add 1 drop methyl red indicator. Add NH<sub>4</sub>OH dropwise until the indicator shows the solution to be basic (yellow). Add 2N HCl dropwise until the solution is just acid. Add 1 drop in excess.
- 3. Place the sample on the Sargent-Slomin electroplater. Adjust the platinum anode (note a) to approximately 1/4-inch above the platinum disc (Note b). Plate for 10 minutes at a starting current of 2.5 amps and about 5 volts. The current may fluctuate during the plating period. Check occasionally and adjust the current to maintain 2.6 amps throughout the plating period.
  - a. The same platinum anode, glass tower, and washer is used through three successive platings of a given aliquot.
  - b. The platinum disc and anode must be freed of any grease film by rinsing several times with acetone and alcohol. Write the sample identification on the back of the disc. Ignite to red heat in a Fisher burner flame. The electroplating cell must be clean and free of any foreign material. Check for leakage before use.
- At the end of the electroplating period, add 1 ml NH<sub>4</sub>OH. Stir for 15 seconds. Turn off the current and stirrer. Remove the anode from plating solution.
- 5. Immediately transfer the plating solution into a 50-ml beaker. Rinse the inside of the plating cell three times with water washes. Combine the washes with the plating solution in the beaker.

- 7. Place sample in a lined and labeled tin box and submit for counting analysis.
- Evaporate the solution to approximately 3 ml. Add 3 ml HNO<sub>3</sub> and l ml HCl. Evaporate to wet dryness. Repeat the HNO<sub>3</sub>-HCl treatment twice.
- 9. Pick up in 1 ml HCl and take to dryness. Do not bake. Rotate the beaker to insure complete dryness. Add 2 ml HCl, boil to 1 ml, and transfer to the same electroplating cell using a new platinum disc as the cathode. Rinse the beaker with two 1/2-ml HCl washes and one 1/2-ml water wash. Transfer each wash to the plating cell (note c).
  - c. Keep the plating solution at minimum volume during this transfer and also during the titration.
- 10. Repeat steps 2 through 9 to obtain second plate.
- 11. Repeat steps 2 through 7 to obtain third plate.
- 12. The three successive platings from each aliquot are counted on a calibrated alpha spectrometer. The total Pu<sup>236</sup> dpm on each plate is added to determine the average Pu<sup>236</sup> tracer concentration. Calculate the tracer stock concentration as of January 1 of the current year.

- 2. Pipet 1 ml each of R.C. Pu<sup>236</sup> Low Level and High Level Stock Solution and 1 ml each of Pu<sup>239</sup> Stock Solution (a) 90 dpm) into two 50-ml beakers.
- Add 10 ml of H<sub>2</sub>O, 1 ml Con. HClO<sub>4</sub>, 2 ml Con. H<sub>2</sub>SO<sub>4</sub>, 10 mg Fe<sup>† 3</sup>
   and evaporate to dryness.
- 3. Wash the sides of the beaker with HCl and evaporate to near dryness.

  Take up in 1-2 ml HCl and transfer to a 40-ml centrifuge cone with H2O and HCl washes.
- 4. Ppt Fe(OH)<sub>3</sub> with NH<sub>4</sub>OH and centrifuge. Wash ppt with H<sub>2</sub>O containing a few drops NH<sub>4</sub>OH and centrifuge. Dissolve the Fe(UH)<sub>3</sub> in a few drops HNO<sub>3</sub> and dilute to 5 ml with 6N HNO<sub>3</sub>. Add~1/2 ml saturated NaBrO<sub>3</sub> solution.
- 5. Warm on hot water bath a few minutes. Saturate the solution with NH<sub>4</sub>NO<sub>3</sub> crystals, add 5 ml hexone and stir with a mechanical stirrer 3 min. Repeat hexone extraction twice adding Sat. NaBrO<sub>3</sub> and more NH<sub>4</sub>NO<sub>3</sub> crystals as necessary.
- 6. Wash the hexone phases by stirring with 5 ml 6N HNO<sub>3</sub> for 1 min and discard the washes. Back extract the Pu with three 5 ml additions of 0.1N HNO<sub>3</sub>. Transfer the aqueous phase to a 50-ml glass beaker.
- 7. Evaporate the solution containing the heavy element tracer and activity to approximately 1 ml. Add 1 ml HNO3 and 1 ml HCl. Evaporate to wet dryness. Repeat the HNO3 HCl treatment twice (Note a).
  - a. Repetition of HCl-HNO<sub>3</sub> treatment is not necessary for the plating of uranium.

with PuZ39 Tracer

- 8. Pick up in 1 ml HCl and take to dryness. Do not bake. Rotate the beaker to insure complete dryness. Add 2 ml HCl, boil to 1 ml, and transfer to a prepared electroplating cell (note b). Rinse the beaker with two 1/2-ml HCl washes and one 1/2-ml water wash. Transfer each wash to the plating cell (note c).
  - b. The platinum disc and anode must be freed of any grease film
    by ringing several times with acetone and alcohol. Write the
    sample identification on the back of the disc. Ignite to red heat
    in a Fisher burner flame. The electroplating cell must be clean
    and free of any foreign material. Check for leakage before use.
  - c. Keep the plating solution at minimum volume during this transfer and also during the titration.
- Add 1 drop methy<sup>1</sup> red indicator. Add NH<sub>4</sub>OH dropwise until the indicator shows the solution to be basic (yellow). Add 2N HCl dropwise until the solution is just acid. Add 1 drop in excess.
- 10. Place the sample on the Sargent-Slomin electroplater. Adjust the anode to not more than 1/4 inch above the platinum disc. Plate for 10 to 15 minutes at a starting current of 2.5 amps and about 5 volts.

  The current may fluctuate during the plating period. Check occasionally and adjust the current to maintain 2.6 amps throughout the plating period (notes d and e).
  - d. Fifteen minutes plating time is required for Pa.
  - e. Twenty minutes plating time is required for T.P. (Am-Cm) samples.

with Pu<sup>239</sup> Tracer

- 11. At the end of the electroplating period, add 1 ml NH<sub>4</sub>OH. Stir for 15 seconds. Turn off the current and stirrer. Remove the anode from plating solution.
- 12. Immediately transfer the plating solution into the beaker used for evaporation. Rinse the inside of the plating cell 3 times with water washes. Combine the washes with the plating solution in the beaker.
- 13. Dismantle the plating cell and remove the platinum disc. Rinse with alcohol and ignite the disc to red heat; cool. Check yield on laboratory alpha counter before submitting sample to the counting room.
- 14. Place sample in a lined and labeled tin box and submit for counting analysis.
- 15. Determine the Pu<sup>236</sup> to Pu<sup>238</sup> and Pu<sup>239</sup> ratios by alpha pulse height analysis. A correction factor for the very small amount of Pu<sup>238</sup> and Pu<sup>239</sup> added to each sample is determined from this data.

# APPENDIX C SAMPLE DATA SHEETS

| QUALITY CONTROL - SAMPLE DEFICIENCY REPORT                                                                                           | Sample No.                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| To be initiated by first employee to become aware of deficiency and then reported to supervisor:  (Fill out in pencil)               | deficiency and then reported to supervisor:     |
| 1. Replicate nonagreement, 6 · 1.                                                                                                    | . Sample contaminated Sample cross contaminated |
| r.<br>ble checked in error<br>on mixup.                                                                                              |                                                 |
| 7. Computer processing.                                                                                                              |                                                 |
| RESPONSIBILITY (List person(s) who will initial form when notified)                                                                  | n notified)                                     |
| 1. Calculation 4.                                                                                                                    | Decontaining tion                               |
| 3. Electronics 6.                                                                                                                    | Activity or carrier aliquoting Other            |
| REASON FOR DEFICIENCY                                                                                                                |                                                 |
|                                                                                                                                      |                                                 |
| DISPOSITION                                                                                                                          |                                                 |
| 1. Recount (circle) LBG, MEW, Gross a, a spac, P-20, y-spec. 2. Rework (indicate method) 3. Rewelgh (indicate method) 4. New Allquot | 2G, γ- • p• ε.                                  |
| OVAL AND ACTION (Circle applied                                                                                                      | ible people)<br>Cher                            |

| er, Sample Desig Kit Just I                                     |                |
|-----------------------------------------------------------------|----------------|
| WITH MEASUREAGE                                                 | CHEMISTICY     |
| TYPICAL DATA RESULTS FOR TISSUE WITH MEASUREALER. Sample Design | PU-239 CONTENT |

| Est Yield 92%                                                                                     | Sample Frac / 0                              | Total Tracer 25. 74 doing          | scorched acratched               |                                                              |                |
|---------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------------|----------------|
| Tree by D. O. Bale 24/13 Tracer by D.B. Bate 19/1/13 Dies in by Jeff. Bate 19/1/13 Dies Alle 92 % | Minister Court 27 AL Sample Frac 1.0         |                                    | Cont. Lines Alexander beave dire | Diss'n Type TEME Plate Qual dented Glean st. dirty mod dirty |                |
| 1/2 Tracer by Duly Buth 1911                                                                      | to nor Heat's Asset por                      | Dilution 500 Mb Uranian Aliq 50 Mb | Vol. Tracer/Suct. J.P. elle.     | Plate Qual dented CLICAD 41                                  |                |
| Pres by Dad. Bally                                                                                | Farinated 14" 20 = 30 days nor leg's seed of | Dilution 500 HL                    | Sample Sections                  | Diss'n Type TEMES                                            | Stip. ActStyle |

| 20 Total Counts 67/17  * 1.8 1.8  Net ents [Pul <sup>34</sup> Ful <sup>37</sup> ]/Geoxtime : 39 3 201 | LYSIS FOR PU Min. Run 2760 Date 342-240-63 | Puin  Tot. counts in channels                                                              | 94.72    0.747    4.0   " 63.27    time x Geo x yield x aliq.   Net Counts   B | Chemistry Siepls of - 10318 (Bull Luse) |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Date 3 57, 8 34-63 Minutes Run  2, 52  2, 52  Net cpm  Net                                            | SHT ANA                                    |                                                                                            | 0.747                                                                          | 06-06                                   |
| Inst 2 T 3 Gross cpm                                                                                  | 7                                          | Puin Tracer Total counts in channels 15-56 : 1281 Background Counts from Met Counts . 1280 | 1 84.72)( 23.74 )( 0.76k<br>time x Geo tracer(dpm) corr<br>Net counts/A        | TRACER FRACTIONS                        |

Counting SECTER WILLE

90-90 2

TRACER FRACTIONS Sample Activity (dpm) 0-50

REVIEWED BY:

• ₹

00

Calculations

2000-4000

Sample Activity (Apr., 90-2000

Tracer Addition (dpm)

H. Tracer Addition (dpm) 400 ... 5 4000 requires aliquol

| PICAL DATA RESULTS FOR TISSUE  TH UNDETECTABLE PU-239  CHEMISTRY  DAILY AND Tracer by Day B. Ministry  Daily A. Tracer by Day B. Minister Count  Lodge I are Regid 20 down Minister Minister 20 down  Cologn Minister Minis | 20 Total Counts 270  2 / 938 S.F. s / 200                       | 10n FOR PU  10n 600 Date 091. 45-45                                                                        | Error (dpm) : 180.3<br>**Total Error : 62.7                         | 3 43 '                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TA RESULTS FOR TISSUE  CHEMISTRY  CHEMISTRY  CHEMISTRY  CHANGE BLE PU-239  CHEMISTRY  CHANGE BY AND BOTH BOTH BOTH BY AND BOTH BY AND BOTH BY AND BY AND BOTH BY AND BY AN | Date OST, BOS - Get Minutes Run 50 23 1 Net com Net com Net com | ALPHA PULSE HEIGHT ANALYSIS FOR PU  Pulm  Pulm  Tot. counts in channels  Background  Counts from  Net Coat | 2.857 yield x Geo x yield x sliq<br>2.857 yield Ne                  | S 50-90 Chemistry States  Bu Counting AB AC  Austr-1000 Catculations  800 • REVIEWED BY  C.1                                                                                                                                       |
| TYPICAL DATA RESULTS FOR TISSUE WITH UNDETECTABLE PU-239 CONTENT CONTENT CONTENT District Pu'' O-20 dpd 1 1111 Req'd 20 dpd Mnnil Dilution Abasé Sample Sections Vol. Tracer/Sact. 1011 District Type 7262 Plate Qual. dented (clean) al. dirty Stip. Act. Abasé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00 Date 082.4<br>Grass cpm Bad. cpm                           | STC  Julik Tracer  Jolal counts in channels  Jackground  Jounts from  Net Counts                           | 2)/.8)( 20.18 )( 0.942 ) .  me x Geo tracer(dpm) corr  Net counts/A | TRACER FRACTIONS  L. Sample Activity (dpm) 0-50  L. Tracer Addition (dpm) 10  J. Tracer Addition (dpm) 400  L. Tracer Addition (dpm) 400 |

## APPENDIX D TECHNICAL PAPER FOR HANFORD SYMPOSIUM AND 9TH ANNUAL MEETING HEALTH PHYSICS SOCIETY

ROUTINE DETERMINATION OF PLUTONIUM BY TRACER TECHNIQUES IN LARGE BIOLOGICAL SAMPLES \*

by

W. J. Major, R. A. Weesman, R. Melgard, L. Leventhal

Technical Services Division
Tracerlab, A Division of Laboratory for Electronics, Inc.
2030 Wright Avenue
Richmond, California

#### ABSTRACT

A precision tracer procedure was developed for the rapid analysis of non-uniformly distributed plutonium in large biological somples. Liver, lung, kidney, lymph node, trachea, gastrointestinal tract, masal mucosa, pharyngeal mucosa, bone, urine and feces samples from burros, sheep, and dogs (exposed to plutonium aerosols) were assayed for plutonium. The chemical procedure consisted of: equilibration of sample plutonium with <sup>236</sup>Pu tracer, wet ashing by refluxing with  $H_2SO_4$  and a catalyst; extraction of plutonium from bulk salts with cupferron-chloroform; purification with ion-exchange resins; and electrodeposition on platinum. These procedures minimized the requisite volume of acids and avoided the violent exothermic reactions of some wet ashing procedures. Problems associated with dry ashing, such as loss of the radioisotope by entrainment in solid carbon particles, and formation of insoluble oxides of plutonium, were avoided. Also, the need for the large ashing furnaces was obviated.

This report is based on work performed under Contract DA-49-146-XZ-192, Mod 4, between the Defense Atomic Support Agency and Tracerlab, A Division of Laboratory for Electronics, Inc.

Measurement of the plutonium content was accomplished by tracer yielding and alpha pulse-height analysis. This method ensured a high degree of accuracy, high sensitivity, and freedom from interference from other alpha emitters. A typical chemical yield was 55%, and the counting precision was within 3%. Limits of detection were approximately 0.05 dpm for a thousand-minute count.

#### INTRODUCTION

Procedures for the determination of picocurie amounts of plutonium in biological materials are abundant in the literature.

Inherent drawbacks to these procedures are: procedures are limited to specific types and amounts of samples; dissolution and purification losses are erratic, usually requiring calibration of (Reference 9) chemists /; and the chemical procedure must often be revised for each sample. Weiss and Shipman / have used Pu tracer to follow procedural steps in urinalysis. Painter / has used Pu tracer to follow activity distribution in dogs. In neither case, however, was the tracer used to yield another isotope of plutonium.

Attempts to minimize plutonium losses sometimes result in a product which contains interfering alpha emitters such as the 241 Am daughter of 241 Pu, present in many plutonium samples. (Reference 12) Hollstein / mentions contamination from uranium and Weiss and Shipman mention 232 Th, 238 U, 231 Pa, and 237 Np contamination in (Reference 13) urine samples. Other workers such as Sanders and Leidt / have expressed dissatisfaction with processing methods. Kooi and (Reference 14) Hollstein / were dissatisfied with erratic plutonium recovery and the inapplicability of available procedures to water containing large concentrations of iron or calcium.

By means of a 236 Pu tracer technique, we have successfully determined sub micro amounts of plutonium in nuclear debris,

atmospheric filters, soil, dry fallout, rainwater, food, environmental samples, and neutron-activated materials for the past twelve years. In this procedure a known quantity of 236 Pu is equilibrated with sample plutonium, and 236 Pu as well as the heavier plutonium isotopes are later determined by alpha spectrometry. Positive identification of all isotopes and an accurate correction for processing losses are assured. The method is adaptable to most samples containing plutonium, since 236 Pu is usually absent.

This tracer method has been combined with an appropriate bioassay procedure for routine determination of non-uniformly distributed plutonium in large biological samples. In a recent program burros, sheep, and dogs were exposed to plutonium aerosols to simulate uptake, deposition, retention, and translocation of plutonium in humans exposed to plutonium aerosols from a non-nuclear detonation. Over 600 liver, lung, kidney, lymph node, traches, gastrointestinal tract, nasal mucosa, pharyngeal mucosa, bone, urine, and feces samples from the animals were analyzed by our lab for plutonium content. These samples ranged from a few ounces to 15 pounds and contained from 0 to 60.00 dpm of 239, 240 Pu.

#### EXPERIMENTAL

### Preparation of 236 Pu Tracer

The <sup>236</sup>Pu tracer was prepared in a cyclotron irradiation and chemically purified at Tracerlab. No measureable <sup>239,240</sup>Pu or <sup>238</sup>Pu was apparent after purification. Both exhaustive electrodeposition and isotopic dilution methods were used to standardize the tracer.

In exhaustive electrodeposition, four aliquots were withdrawn from the purified stock and the tracer electrodeposited on a platinum disc. The plates were counted without collimators in our Frisch grid chambers and tracer activity corrected for chamber counting efficiency. Electrodeposition and counting were repeated on the plating supernate until a plate relatively free of activity was obtained. Three platings were usually required. Summation of the electrodepositions gave the tracer concentration.

In isotopic dilution a spike of National Bureau of Standards 239, 240 Pu stock solution\* (99, 97% pure) was added, for yielding, to nine aliquots of the purified 236 Pu stock solution. The spike and tracer were equilibrated by evaporation with H<sub>2</sub>SO<sub>4</sub> and HClO<sub>4</sub> and isolated by the procedure described below. The plated samples were counted and the 236 Pu concentration calculated after 239 Pu yielding.

Exhaustive electrodeposition gave an average concentration of  $25.0 \pm 0.38 \, \mathrm{dpm/ml}$  236 Pu for the four aliquots. Isotopic dilution gave an average 25.7  $\pm$ 0.26 dpm/ml for the nine aliquots. Experience has shown that the first method is susceptible to low results due to sequential handling losses. This point has been confirmed by standardization of the tracer, using a combination of both techniques on the same aliquots of tracer.

#### Sample Dissolution

The choice of dry or wet ashing is often a matter of personal pre(Reference 15)
ference or of facilities available. Comar / discusses the relative
(Reference 16)
merits of each and usually favors dry ashing. Greenberg / recommends the convenience of dry ashing. Wet-versus-dry ashing was

<sup>\*</sup>An analysis of the NBS standard (listed as 99.97% pure) on our Mass Spectrometer gave the following isotopic composition: 94,386 weight % <sup>239</sup>Pu; 5,271 weight % <sup>240</sup>Pu; and 0,343 weight % <sup>241</sup>Pu. The <sup>239</sup>Pu, <sup>240</sup>Pu alpha disintegration rate of the solution was calculated from this data.

experimentally compared. Dry ashing resulted in losses from spattering and physical entrainment of plutonium in solid carbon particles. It was assumed the greatest losses would occur in samples having high organic-to-ash ratios, such as soft tissues. Losses from the formation of difficultly soluble compounds of plutonium at high ashing temperatures (Reference 17) were also suspected. Toribara and Predmore / found urine, bone, and soft-tissue ash readily soluble in strong HCl, while fecal and food ash contained a difficultly soluble residue which sometimes trapped 97% of the plutonium, requiring a drastic leaching and fusion for dissolution.

In dry ashing, sample plutonium and tracer cannot be equilibrated until after the ashing process; and losses occurring at this stage result in inaccurate sample yielding. Wet ashing of tissue and fluid samples in the presence of 236 Pu tracer was tried and gave the desired results. The procedure, and adaption of the Kjeldahl method, utilized the oxidizing power of concentrated sulfuric acid, a mercury catalyst, and refluxing at high temperatures. The apparatus consisted simply of large beakers covered with inverted funnels (Figure D.1). Unaccountable sample plutonium losses were eliminated by addition of the tracer at the start. Equilibration of sample plutonium and tracer was assured by dissolution of the sample in the strongly oxidizing media. Requisite volumes of acids and violent exothermic reactions of some wet ashing procedures were minimized. After a clear solution was obtained, the excess acid was evaporated.

Bone samples were dry ashed, since they have a low organic-toash ratio, and the ash serves as a carrier to prevent loss of plutonium during high-temperature ashing. The bone ash was easily removed from the ashing container by acid dissolution and then equilibrated with plutonium tracer.

#### Plutonium Isolation

The residue from wet asking usually contained large amounts of inorganic salts. Most of the bulk salts were separated by extracting the plutonium, reduced to the trivalent state with hydroxlamine hydrochloride, into a cupierron-chloroform solution. The extraction was a (Reference 9) scaled-up version of the method outlined by Beaufait and Lukens/ (Reference 18) and Langham. The residual salts were further reduced by co-precipitation of plutonium with Fe(OH) 3 from a hot basic carbonate solution and then from an ammoniacal solution.

The plutonium was separated from iron and traces of other metallic sons by ion-exchange reson-absorption and slutium with (Reference 19)

HCl-NH<sub>4</sub>I. The eluent was evaporated to low volume and treated with HNO<sub>3</sub>, HClO<sub>4</sub>, and HCl to remove iodine and residual sesin particles. If a residue persisted, the sample was recycled through the chemistry procedure, as a visible residue at this point would result in a dirty plate in the procedure below.

(Reference 20)
A rapid electrodeposition procedure reported by Mitchell/
was used to obtain from the clear solution a weightless, invisible deposit
of plutonium on a platinum disc with a plating time of 10 minutes. The
disc was 5 mils thick, with a mirror finish, pre-cut to 2, 2 cm in diameter.
The electrodeposition cell, designed by our laboratory, limited the
plating solution exposure to the glass tower, teflon gasket, and platinum
disc.

Sequential outlines of the sample processing are given (Figures D.2 and D.3, and a detailed chemical procedure is appended.

#### Activity Measurements

Each electrodeposited plutonium sample was counted on an alpha pulse-height analyzer. For this purpose, the outputs from four Frisch grid chambers (Tracerlab Model RLD-1) were connected

135

to one multi-channel analyzer (Technical Measurements Corp., Model CN-116) by dividing the full range of 256 channels into quadrants of o4 channels each.

The chamber was calibrated for alpha energy using a multi-peak alpha source containing 239 Pu, 241 Am, and 236 Pu (Tracerlab R-37 Alpha Spectrometer Kit). The calibration was made immediately before and after each sample was counted. This provided a check for instrument drift during the sample counting interval. The instrument controls were adjusted so that the 64 channels covered an energy range of 4.5 to 6.0 Mev. This range included the isotope energies of 239 Pu (5.14 Mev), 240 Pu (5.16 Mev), 238 Pu (5.49 Mev), and 236 Pu (5.75 Mev). The amplifier gain setting gave a scale factor of 37 Kev per channel. Each isotope present was registered over a spread of approximately ten channels.

A disposable metal collimating ring, surrounding each sample disc, was used with each sample to preclude the counting of degraded alpha particles. Some loss in counting efficiency resulted but was off-set by improved peak contours and distinct separation of alpha energy peaks. The resolution (full width at half-maximum) of the four Frisch Gridchambers, including disc collimation, was 0.88% at 5.15 Mev. The alpha peak counting efficiency was approximately 35%.

The counting time for an unknown sample was determined by the isotope having the lowest activity. If activity levels permitted, the lowest activity peak was counted to a standard error of within 3%.

The maximum counting time for any sample was limited to 1000 minutes.

239, 240

Calculation of Pu

The results of the alpha pulse-height analyses are presented on printed tape. A graphical plot of a typical spectrum for a tissue con-

taining a moderate amount of <sup>239</sup>Pu is illustrated in Figure D.4. The energy calibration line was calculated from the pre-and postcounting energy calibrations of the counting chamber. A summation was made of counts under each isotope peak present. These counts were corrected for low energy tail, background, peak resolution, and instrument drift. The plutonium content of the sample was c loulated by:

Pu and Pu could not be calculated separately, as their alpha energies were too close to resolve with a Frisch-Grid Chamber.

The counting efficiency of each Friech-Grid Chamber was measured, using a high precision alpha standard, and it was not necessary to calculate a yield to determine the plutonium content. However, the yield was usually determined as a quality control measure in order to assess the efficiency of the chemistry procedure.

Quality\_Control

The biological specimens, received in the form of frozen samples sealed in plastic bags, were stored in a walk-in freezer prior to processing. Samples were analyzed in a low-level radiochemical laboratory to prevent contamination from outside sources and processed with adequate spacing using all new glassware to prevent cross-contamination. The few samples which were expected to be higher in plutonium content, by virtue of their exposure, were processed separately.

All reagents were made up fresh and analyzed for any laboratory blank. Simulated samples (prepared by adding a 236 Pu spike to a matrix similar to the animal specimens) were analyzed to check on procedures. The laboratory blanks were effectively background. For an optimum

sample counting time of 1,000 minutes, the blanks were found to be in the region of 0.05 dpm, which is the limit of detection for the instrument.

All activity measurements were performed in an isolated and countrolled area. The background count rate and counting efficiency of each Frisch-Grid Chamber was checked periodically. In the 239, 240 Pu energy region, the background count was approximately 0.001 cpm.

#### RESULTS

Based on the samples analyzed, the reflux wet ashing-tracer procedure has been found to be successful. It was moderately time-consuming and expensive, however. Ordinarily 3 to 5 days were required to dissolve 16 to 20 large tissue samples. A combination of  $NO_3$ ,  $H_2SO_4$ , fuming-HNO<sub>3</sub> (Reference 21) and HClO<sub>4</sub> dissolutions in open beakers was substituted for smaller samples./

A tabulation of radiochemical yields are listed in Table D.1. Generally, samples 0.1 to 4 ounces and 4 to 14 ounces averaged 55% and 48%, respectively. Samples 1 to 9 pounds averaged approximately 50%. Yields from samples up to 15 pounds are still to be determined. Averages reported include some low yield samples which were processed before our procedures had been fully developed. Recent data show improved yields in all sample categories.

The use of tracer did not lessen the difficulties of recovering such minute amounts as 0.1 dpm  $(7 \times 10^{-13} \text{ grams})$  of plutonium from pounds of material. Losses of sample plutonium are always a possibility, but with addition of tracer, these losses are positively known. Thus, if the entire sample was lost due to undetected processing irregularities, the sample was reported as lost and not as zero dpm of plutonium.

The sample activities measured in this program are not germane to this paper, since samples came from both exposed and unexposed

animals. Some animal organs were found to contain levels of plutonium below our limits of detection, which is nominally 0.05 dpm. The lowest samples showed activity from 0.05 to 0.10 dpm.

Variations in yields introduced no special problems, since each sample was individually yielded. However, 50 to 70% was considered most desirable for obtaining optimum sensitivity. The fluctuations in yields emphasize the inaccuracies which would have resulted had the work been done without tracer. Also, in retrospect, an adequate tracer-free plutonium assay procedure would have been very difficult to develop.

#### **ACKNOWLEDGEMENTS**

The valuable contributions of our scientists in this program are too numerous to credit. However, the authors wish to thank Dr. C. E. Gleit, D. W. Billings, C. E. Ensor, and Mrs. D. E. Hawkinson, for their exceptional assistance.

#### CHEMICAL PROCEDURE

- 1. Remove the frozen sample from its polyethylene bag and allow it to thaw for a few minutes under a heat lamp. If the sample shape or size is such that it will not fit in the bottom half of a fourliter beaker, cut the sample into appropriate sections and place each section in a separate beaker. Rinse the plastic bag with HNO<sub>3</sub> and add the washings to the beaker.
- 2. Add enough H<sub>2</sub>SO<sub>4</sub> to completely cover the sample. Pipet an appropriate amount of <sup>236</sup>Pu tracer (within a factor of five of the expected sample activity but a minimum of 15 dpm) into each beaker and add approximately 5 grams K<sub>2</sub>SO<sub>4</sub> and 2 to 3 drops Hg metal. Spray the sample with Dow-Corning Antifoam A silicone defoamer.
- 3. Attach the stem of an inverted 6-inch funnel to a ring stand and clamp and lower the funnel mouth into the beaker. Secure a few inches above the sample.
- 4. Digest the sample gently with low heat until a black tarry mixture is obtained. Increase the heat gradually and reflux until the mixture is a clear solution. The tarry mixture will turn to a black jelly, a black liquid, a red liquid, and finally, a clear solution. Raise or lower the funnel during dissolution to control the reflux action. Wash down any carbonacecus material on the beaker and funnel walls with H<sub>2</sub>SO<sub>4</sub>.
- 5. Evaporate the H<sub>2</sub>SO<sub>4</sub> until salts start forming. Remove the funnel and add HNO<sub>3</sub> cautiously to cool the solution. If the sample had been divided into sections for the dissolution, combine the sections into one beaker and evaporate to low volume. Cool and transfer the sample with water to a large polyethlene bottle

- or a 2-liter acid bottle. Dilute to approximately 500 ml.
- 6. Add 10 ml sat. NH<sub>2</sub>OH·HCl to the diluted sample and about 50 ml CHCl<sub>3</sub>. Stir with a mechanical stirrer for 1 minute at high speed. Add 75 to 100 ml 6% aqueous solution of cupferron and stir again at high speed for 5 minutes.
- 7. Transfer the mixture into four 250-ml polyethlene bottles and centrifuge to separate the phases. Transfer the CHCl<sub>3</sub> extracts with a transfer pipet to a 400-ml beaker, taking care not to disturb the interfaces. Repeat the extraction, without addition of more cupferron, until the CHCl<sub>3</sub> phases are colorless.
- 8. Boil the CHCl<sub>3</sub> collections to low volume (approximately 3 ml) and allow contents to cool. Rinse down the sides of the beaker with HNO<sub>3</sub> and boil to approximately 3 ml. Rinse the sides with furning nitric and boil down again (avoid dryness). Add 10 ml turning nitric and 25-30 ml HClO<sub>4</sub>. Cautiously heat until an exothermic HClO<sub>4</sub> reaction begins. Remove the beaker from the bot plate and allow the reaction to go to completion.
- Fume the HClO<sub>4</sub> to low volume. Gool the solution and transfer with water washes to a 40-ml centrifuge cone.
- 10. Add 10 mg Fe unless the sample is known to contain that much or more. Add 19N NaOH until the solution is basic to precipitate metal ions. Add 5 ml sat. Na<sub>2</sub>CO<sub>3</sub> solution and digest the precipitate in a hot water bath for 10 minutes. Centrifuge and decant the supernate to waste. Dissolve the precipitate in HNO<sub>3</sub> and dilute to approximately 30 ml.
- 11. Make the solution basic with NH<sub>4</sub>OH and digest the precipitate in a hot water bath for 10 minutes. Centrifuge and decant the supernate to waste. Wash the precipitate twice with 10-ml portions of H<sub>2</sub>O containing 1 drop NH<sub>4</sub>OH.

141

- Dissolve the precipitate in a minimum of HNO<sub>3</sub> and add 10 ml
   6N HNO<sub>3</sub>.
- 13. Prepare a 100 to 200 mesh Dowex 1-X 10 resin column by adding approximately 1/2 inch of resin to a tubulated glass column, 12 mm I.D. and 85 mm in length, containing a Dacron wool plug at the bottom. Insert another plug at the top and pre-condition the column with 40 ml 6N HNO3.
- 14. Pour the solution from step 12 onto the column. Wash the centrifuge tube with 20 ml 6N HNO3, followed by 20 ml HCl and add the washings to the column.
- 15. Allow the column to drain and elute the plutonium into a 50-ml beaker with 30 ml of freshly prepared HCl-NH<sub>4</sub>I (approximately 50 mg NH<sub>4</sub>I per 30 ml HCl).
- 16. Evaporate the cluate to approximately 5 ml and add 5 ml HNO<sub>3</sub> to destroy I<sup>\*</sup>. Add 3 ml HClO<sub>4</sub> and evaporate to wet dryness.
- 17. Take up the residue in 1 ml HCl and evaporate to dryness. Do not bake. Rotate the beaker to insure complete dryness. Add 2 ml HCl, boil to 1 ml, and transfer to a propared electroplating cell (note a). Rinse the beaker with two 1/2-ml HCl washes and one 1/2-ml water wash. Transfer each wash to the plating cell (note b).
  - a. The platinum disc and anode must be freed of any grease film by rinsing several times with acetone and alcohol. Write the sample identification on the back of the disc. Ignite to red heat in a Fisher burner flame. The electroplating cell must be clean and free of any foreign material. Check for leakage before use.
  - b. Keep the plating solution at minimum volume during this transfer and also during the titration.

- 18. Add drop methyl red indicator. Add NH<sub>4</sub>OH dropwise until the indicator shows the solution to be basic (yellow). Add 2N HCl dropwise until the solution is just acid. Add 1 drop in excess.
- 19. Place the sample on a Sargent-Slomin electrolytic analyzer.

  Adjust the rotating anode to approximately 1/4 inch above the platinum disc. Plate for 10 minutes at a starting current of 2.5 amp and approximately 5 volts. The current may fluctuate during the plating period. Check occasionally and adjust the current to maintain 2.6 amp throughout the plating operation.
- 20. At the end of the electroplating period, add 1 ml NH<sub>4</sub>OH. Stir for 15 seconds. Turn off the current and stirrer. Remove the anode from the plating solution.
- 21. Immediately transfer the plating solution into the beaker used for evaporation. Rinse the inside of the plating cell 3 times with water washes. Combine the washes with the plating solution in the beaker.
- 22. Dismantle the plating cell and remove the platinum disc. Rinse with alcohol and ignite the disc to red heat.
- 23. Place disc in a lined and labeled tin box and submit for alpha pulse height analysis.

| Sample<br>Weight<br>Range | Tissue *         | Number<br>of<br>Samples | Pu<br>Recovery<br>Range | Pu<br>Recovery<br>Average |
|---------------------------|------------------|-------------------------|-------------------------|---------------------------|
| Ounces                    |                  |                         | 4                       | 1,                        |
| 0.2-0.3                   | Hilar Node (D)   | 12                      | 44-74                   | 61                        |
| 0, 3- 0.4                 | Hilar Node (S)   | 9                       | 21-62                   | 43                        |
| 0.2-0.9                   | Hilar Node (B)   | 12                      | 33-77                   | 60                        |
| 0.4- 0.8                  | Phar. Mucosa (D) | 15                      | 37-75                   | 65                        |
| 0.7-0.8                   | Nasal Mucosa (D) | 2                       | 50-79                   | 65                        |
| 1, 1- 1, 6                | Traches (D)      | 9                       | 39-85                   | 58                        |
| 1, 4- 2, 3                | Kidney (D)       | 14                      | 24-88                   | 51                        |
| 1, 7- 3, 2                | Phar. Mucosa (B) | 6                       | 32-68                   | 49                        |
| 2, 4- 3, 6                | Lungs (D)        | 9                       | 28-64                   | 49                        |
| 3. 3- 4. 0                | Kidney (S)       | 6                       | 40-72                   | 55                        |
| 4.8-6.4                   | Liver (S)        | 17                      | 26-80                   | 47                        |
| 5. 3= 8. 5                | Controls         | ŽÓ                      | 24-74                   | 52                        |
| 6, 1- 7, 3                | Bone (S)         | 18                      | 24-69                   | 42                        |
| 7, 8-14.                  | Liver (D)        | 10                      | 30-77                   | 50                        |
| Pounds                    |                  |                         | 7.                      | *                         |
| 0, 9- 1, 1                | Trachea (B)      | 5                       | 42-70                   | 56                        |
| 1.0- 2.5                  | Kidney (B)       | 16                      | 21-80                   | 49                        |
| 1.9-3.3                   | Bone (B)         | 24                      | 23-75                   | 54                        |
| 3.6-10.2                  | Lung (B)         | 3                       | 34-75                   | 52                        |
| 4.4- 8,9                  | Liver (B)        | 10                      | 37-57                   | 48                        |
|                           | TOTAL            | 223                     | 21-88                   | 52                        |

<sup>\*</sup> D = Dog, S = Sheep, B = Burro

144 CONFIDENTIAL

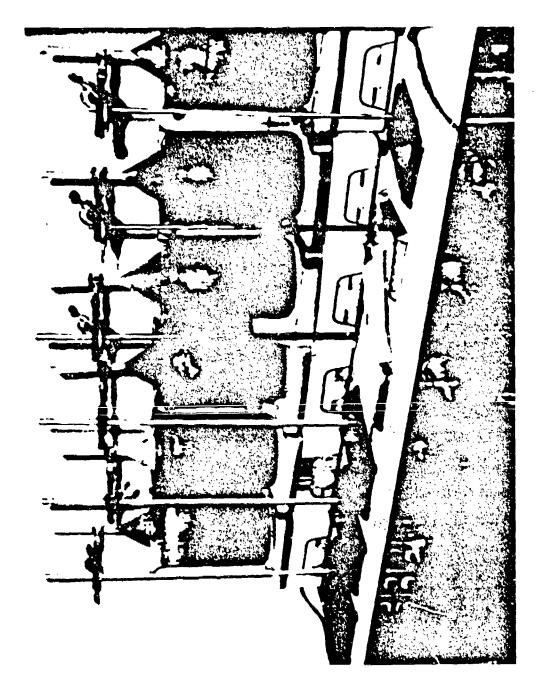



Figure D.1 Reflux apparatus for biological sample. (Traceriab photo)

```
Frozen Sample
            Thaw
           Section
           HIS C.
           Tracer
           K,SQ, (Solid)
Diss.
           Hg metal catalyst
            Defoamer
            Digest with heat
            Reflux
                                                          Organic Matter
       Clear Solution
           Evaporate to salts
           HNO,
            Combine sections
Sep'n.
            Transfer to large polyethlene bottle
            Satd. NH2OH · HCI
            CHCl; - Cupferron extraction
            Repeat extraction - Transfer to beaker
                                                      -> Insoluble Salts
       Metal Ions in Organic Extractant
            Evaporate to low volume
            HNO, and f-HNO, evaporations
            HClO, - exothermic reaction
            H2O - Transfer to centrifuge cone
                                                      -> Organic Extractant
       Metal Ions in Aqueous Solution
            Fe<sup>+</sup>,
            19N NaQH
            Said. Na<sub>2</sub>CO<sub>3</sub>
                                                       -> Uranium Carbonate Comple:
       Metal Hydroxides and Carbonates
            HNO,
            NH, OH
                                                       → Soluble Salts
       Metal Hydroxides and Carbonates
            6N HNO,
            Dowex 1-X10 Resin column
            6N HNO, - HC1
            HCl - NH4I elution
                                                        -> Metal Complexes
```

Figure D.2 Chemical dissolution, separation, and purification sequential scheme.

```
Pu+1.4
     Evaporate to low volume
     HNO, and HClO.
     Evaporate to wet dryness
     HC1
     Evaporate to dryness
     HCl, evaporate to lml
     Transfer to electroplating cell containing platinum disc
Pu<sup>†3, 4</sup> in plating cell
     Methyl Red Indicator
     HC HK
    2N HCl - ph adjustment
Trans z onto an electrolytic analyser
Cell in electrolytic analyser
     Anode adjustment - 1/4 inch above disc
Current - 2.5 amps., 5 volts
     Plate 10 - 20 minutes
     ИНОН
     Remove anode
     H<sub>2</sub>O wash
     Remove platinum disc
     EtOH
     Ignite
```

Figure D.3 Plutonium electroplating sequential scheme.

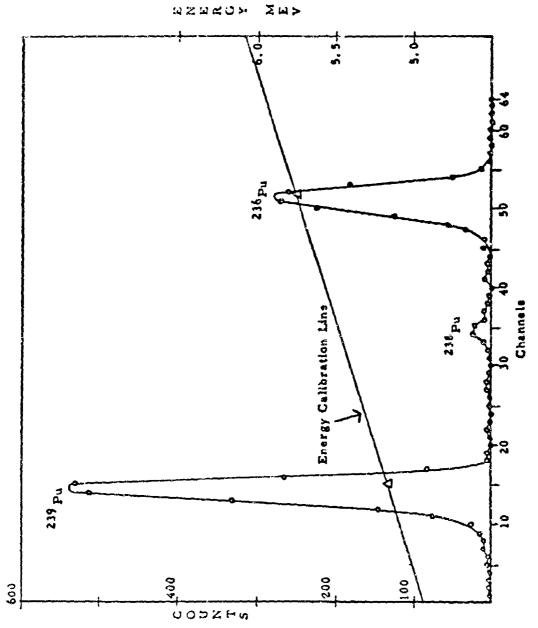



Figure D.4 Typical spectra biological sample (burro liver).

# APPENDIX E DATA TABLES FOR PU<sup>136</sup>, PU<sup>136</sup> AND URANIUM (U<sub>1</sub>O<sub>1</sub>) IN PHYSICAL, BIOLOGICAL, TRACER, AND QUALITY CONTROL SAMPLES

#### KEY TO PHYSICAL SAMPLE TYPE

| TLW Anal, Desig. | Sample Type                    |
|------------------|--------------------------------|
| CCD              | Casella Disc                   |
| CCF              | Casella Filter                 |
| CAD              | Andersen Disc                  |
| CAF              | Andersen Filter                |
| CTA              | Total Air Sample               |
| CTD              | Total Air Sample<br>Disposable |
| CSA              | Sequential Air Sample          |
| CDS              | Deposition Sample              |
| CQC              | Soil Samples (Quality Control) |
| <b>cws</b>       | Water Samples                  |
| CAC              | Aluminum Collectors            |
| cvs              | Vegetation (Sagebrush)         |
| CSF              | Soil Fractions                 |
| CBS              | Balloon Wire Swipes            |

## KEY TO BIOLOGICAL SAMPLE TYPE

| TLW Anal Desig. |                     |   |
|-----------------|---------------------|---|
|                 | Sample Type         | 4 |
| RDB             | Dog Bone            |   |
| RDK             | " Kidney            |   |
| RDL             | " Liver             |   |
| RDR             | " Lung              |   |
| RDH             | " Hilar Node        |   |
| RDT             | " Trachea           |   |
| RDS             | " G. I. Tract       |   |
| RDP             | " Pharyngeal Mucosa | • |
| RDN             | " Nasal Mucosa      |   |
| RSB             | Sheep Bone          | • |
| RSK             | " Kidney            |   |
| RSL             | " Liver             |   |
| RSR             | " Lung              |   |
| RSH             | " Hilar Node        |   |
| RST             | " Trachea           |   |
| RSS             | " G. I. Tract       |   |
| RSN             | " Nasal Mucosa      |   |
| RSU             | " Urine             |   |
| RSF             | " Feces             | ٠ |
|                 |                     |   |

## KEY TO BIOLOGICAL SAMPLE TYPE (2)

| TLW Anal, Design, | Sample Type         |
|-------------------|---------------------|
| RBB               | Burro Bone          |
| RBK               | " Kidney            |
| RBL               | " Liver             |
| RBR               | " Lung              |
| RBH               | " Hilar Node        |
| RBT               | " Trachea           |
| RBS               | " G. I. Tract       |
| RBP               | " Pharyngeal Mucosa |
| RBN               | " Nasal Mucosa      |

TABLE E.1 RADIOCHEMICAL ANALYSIS OF ROLLER COASTER PHYSICAL SAMPLES, DOUBLE THACKS
ARC LOCATION 1 LW 1 LW 60-239,240

| i                               |                                  | -                                               |                                     |             |                      |                      |                                                                        |                                                                      |                                                      |                                                                      |
|---------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------|-------------|----------------------|----------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| ANAL JHON                       | <b>%</b> %                       | 1.7E 03<br>9.6E 00<br>3.9E 00                   | # <del> </del>                      | 1.CE 02     | 1. SE 03<br>3. CE-C2 | 4. 36-01<br>6. 66-01 | 10-31*6                                                                |                                                                      | 2.6E 00<br>3.8E-01<br>1.55-01<br>9.0E-02             | 3. EE-01<br>6. SE-01<br>4. EE-01<br>1. EE-01                         |
| COUNT<br>TIME                   | 2C<br>2C                         | 200                                             | 2 2 2                               | 20<br>20    | 200                  | O 0 6                | 20°C                                                                   | 2 <b>4</b> 6                                                         | # 2 4 8<br>0 0 0 0<br>0 0 0 0                        | 20C<br>2CC<br>2CC<br>50C                                             |
| Y IELC<br>IR *RE<br>WORK )      | 81.2                             | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4           | 0 41 41<br>0 41 41                  | 71.3        | 42.4                 |                      | 0 4 4 6 17 2 8 6 17 2 8 6 17 2 8 18 18 18 18 18 18 18 18 18 18 18 18 1 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                             | 87 - 51 80<br>                                       | 40 00 00<br>                                                         |
| UR AN IUM<br>(FICRO<br>GHAMS)   |                                  | •                                               | 1.13                                |             | 14.7                 | 33.5                 | 0.172<br>0.168                                                         | 2.86<br>0.0610<br>1.44<br>0.665                                      |                                                      |                                                                      |
| FU-239,240<br>ACTIVITY<br>(DFP) | 3.08 ±0.07E 07<br>1.29 ±0.03E 07 | 1.2940.03E 08<br>2.9640.08E 07<br>3.4641.38E 00 | .7040.07E<br>.4240.06E<br>.1640.03E | .49 #0.12E  | .43 t0.20E           | .7740.24E            | .08 t0 .03E                                                            | 5.77 #0.01E 03<br>1.70 #0.23E 00<br>1.92 #0.08E 02<br>3.92 #0.09E 02 | .27 40.13E<br>.84 40.13E<br>.66 40.22E<br>.10 40.03E | 2.18 t0.21E 00<br>9.88 t0.24E 02<br>2.49 t0.08E 01<br>3.80 t0.26E 00 |
| TLN<br>ANALYSI S<br>NO.         | CAC- 376<br>377                  | 378<br>379<br>CD S-1719                         | CCO-2160<br>2206<br>CAC- 380        | 381<br>2069 | 382<br>CAD-2164      | 2210<br>CCD-2165     | 2168                                                                   | 2175<br>2219<br>CTA-2176<br>CCO-2216                                 | 1835<br>1836<br>1837<br>1838                         | CCF-1839<br>CCD-1855<br>1856<br>1857                                 |
| TLW<br>COLLECTION<br>NO.        | \$614<br>9615                    | 8(19                                            | ~ ~                                 |             | 2 520-A              | 8<br>2522-A          | ~ (                                                                    | 5698-A<br>8<br>9459-A<br>9456-B                                      | -19                                                  | 5<br>9677-1<br>2<br>3                                                |
| LOCATION                        | ں ب                              | AJ-C7<br>BL-C9<br>Bn-14                         | 066<br>066<br>070                   | 060         | 0 % 0                | 064<br>068<br>684    | 2 C C C                                                                | 000000000000000000000000000000000000000                              | 0 6 0 - 1<br>2 6 4                                   | 0<br>25<br>0<br>1<br>0<br>1<br>0<br>1<br>0                           |
| ARC                             | 79                               |                                                 | ∢                                   | ا ن         | 0                    |                      | E.                                                                     |                                                                      |                                                      | 9                                                                    |

Note: All Physical and Biological activity requits are given for the total sample except the "A" samples (identified in Table E.13) and transferred from Project 2, 6c for radiochemical analyses. These are deficient by the approximate amounts listed in Table E.13. Data were not combined, since in 2.6c, processing particles were not precisely analyzed or an unknown faction of the sample was removed.

\*\*\*

New data this report

| 1   |                                         |                          |                   |                        |                    |                                         |          |            |
|-----|-----------------------------------------|--------------------------|-------------------|------------------------|--------------------|-----------------------------------------|----------|------------|
| ARC | LOCATION                                | TLW<br>COLLECTION<br>NO. | TLW<br>W ANALYSES | PU-239,240<br>ACTIVITY | URAN IUM<br>(HICRO | Y IELC<br>(R=1E                         | COUNT    | AHAL JHON  |
| •   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          |                   |                        | CHARD              | MURK                                    | 1        |            |
| ຶ່  | 9-050                                   | 9-11-4                   | CC0-1858          | 2.3540.09£ 01          |                    | 40.6                                    | 200      | 6. F-01    |
|     | ĸ۸                                      | 50                       | 7                 | .1441.                 |                    | - C - C - C - C - C - C - C - C - C - C | 200      | A. (F-0)   |
|     | 052-1                                   | 9666-1                   | CCD-1846          | 5.61 t0.19E 02         |                    | 96.4                                    | ; ;      | 8. 7E - 01 |
|     | ~                                       | 8                        | 1847              | .3046.                 |                    | 87.5                                    | 100      | 2.25-01    |
|     | m                                       | •                        | ~                 | .6940.                 |                    |                                         | 20C      | 5. (F-01   |
|     | <b>47</b>                               | <b>S</b>                 | CCF-1849          | .35 #0                 |                    | 80.6                                    | 300      | 6.46.00    |
|     | 1-250                                   | 9667-1                   | 7                 | 2 40.08 €              |                    | 82.8                                    | 20C      | 4. CE-01   |
|     | 7                                       | 7                        | 1881              | 38                     |                    | ٠<br>د<br>د<br>د                        | 200      | 7.36 00    |
|     | <b>~</b>                                | m                        | 1852              | 4.42 to.22E 00         |                    | 69.1                                    | 300      | 5. E-01    |
|     | ₹ (                                     | •                        |                   | 9.99 #1.00 E-01        |                    | 5.20                                    | 366      | 8          |
|     | <b>5</b>                                | ···                      |                   | 1.07 to. 10 £ 00       |                    | £7.C                                    | 300      |            |
|     | 052-1                                   | 1-8176                   | CCD-1860          | 3.0140.06E 03          |                    | 65.6                                    | 2 C      | , m        |
|     | ~                                       | ~                        | 1981              | 4.9240.14E 01          |                    | 75.2                                    | 100      | 4. SE-C1   |
|     | P1 -                                    | m                        | 1862              | 1.6340.09E 01          |                    | 17.75                                   | 2CC      | 4. 1E-C1   |
|     | •                                       | •                        |                   | 3.1940.27E 00          |                    | 24.7                                    | 200      | 2. 1E-C1   |
|     | <b>.</b>                                | ·                        | CCF-1864          | 3.23 to. 13£ 00        |                    | 64.3                                    | 336      | 1.45-01    |
|     | 1-450                                   | 1-5936                   |                   | 1.1440.03E 03          |                    | 74.5                                    | 70       | 9. FE-C1   |
|     | ~                                       | <b></b>                  | 1842              | 1.57 t0.02E 02         |                    | £0.€                                    | 200      | 6. 1E-C1   |
|     | <b>~</b> ) .                            | m ·                      | 1943              | 1.02 to.04 E 02        |                    | 3.51                                    | 74       | 4.56-01    |
|     | •                                       | . س                      | 1844              | 1.03 to.06E 01         |                    | 24.0                                    | 2CC      | 3.25-01    |
|     | n.                                      | s,                       | CCF-1845          | 1.52 to.05 € 01        |                    | 61.1                                    | 2CC      | 2. 4E-CE   |
|     | <b>1-6</b> 00                           | 1-9636                   | CCD-1.885         | 2.91 to .09 € 01       |                    | 7.44                                    | 2C C     | 2. JE-C1   |
|     | ~ .                                     | 7                        | 988               |                        |                    | 46.6                                    | ęç       | 6. (E-CL   |
|     | η.                                      | m                        | 1887              | .97                    |                    | 66.6                                    | (F)      | 1.6. 00    |
|     | •                                       |                          | _                 | 1.16 tc.05E 01         |                    | 72.2                                    | 2C C     | 4E-        |
|     | •                                       | <b>•</b>                 |                   | .50                    |                    | 16.3                                    | 306      | 5.46-01    |
|     | 9 5                                     | 9663                     | C TO-1840         | -                      |                    | 33.6                                    | <b>U</b> | 1. 36 CO   |
|     | 1-050                                   | 1-0826                   |                   |                        |                    | 2.33                                    | 3C       | 1.26 00    |
|     | ~                                       | ~                        | 1866              | 1.3910.046 02          | ٠                  | 8C.5                                    | 74       | 6. (E-C1   |

| TAB    | TABLE E.1 (CC | (CONTINUED)                           |                                       |                                       | <br>   <br>   <br>   <br>   <br>                                                                       | 1<br>0<br>1<br>1            | !             | • • • • • • • • • • • • • • • • • • • • |
|--------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------------------------------|
| ARC    | LOCATION      | COLLECTION NO.                        | TLN<br>ANALYSIS<br>NG.                | FU-239,240<br>ACTIVITY<br>(0FP)       | URAN IUM<br>(MICRO<br>GRAMS)                                                                           | Y JELC<br>I R "RE<br>MOŘK J | COUNT<br>TIME | ANAL /HON                               |
| ;<br>; | *             | • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | \$<br>6<br>6<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | T                           | <br>          |                                         |
| ی      | 6-9-0         | 9680-3                                | CC0-1867                              | 6.24 t0.15E 01                        |                                                                                                        | 36.5                        | 2CC           | 3E-                                     |
| ,      | ١             | **                                    | 1868                                  |                                       |                                                                                                        | 36.1                        | 30C           | £6-                                     |
|        | . 40          |                                       | CCF-1869                              |                                       |                                                                                                        | 44                          | <b>300</b>    | 3. EE-01                                |
|        |               | 8-09-5                                | CCD-2170                              | 4.84 t0.17E 02                        | 4.44                                                                                                   | ~                           | 46            | Æ                                       |
|        |               | æ                                     | 2214                                  | 5.01 #G. 10E 01                       | 0.308                                                                                                  | €                           | 20C           |                                         |
|        |               | 9461-A                                | 7                                     | 1.76 t0.05E 03                        | 10.8                                                                                                   | 47.5                        | 3 C           |                                         |
|        | 060-1         | 1-4576                                | CC0-1880                              | 3.51 to. 10E 03                       |                                                                                                        | W)                          | <u>۲</u>      |                                         |
|        |               | ~                                     | 1881                                  | 1.87 t0.05E 02                        |                                                                                                        | ÷                           | 4 (           |                                         |
|        | · m           |                                       | 1882                                  | 8.7840.29€ 01                         |                                                                                                        | Š                           | ęc            |                                         |
|        | •             | *                                     | 1883                                  | 2.25 to.40E 01                        |                                                                                                        | 02.8                        | <b>2</b> 00   | 4. 76-01                                |
|        | · <b>v</b> n  |                                       | CCF-1884                              | 1.98 +0.076 01                        |                                                                                                        | 0                           | 2C C          |                                         |
|        | 062-1         |                                       | 0281-000                              | 2.6010.05E 03                         |                                                                                                        | ~                           | 3C            |                                         |
|        | 7             | ~                                     | 181                                   | 1.61 10.03E 03                        |                                                                                                        | Q,                          | 36            |                                         |
|        | m             | •                                     | 1872                                  | 1.3010.025 03                         |                                                                                                        | G,                          | 40            |                                         |
|        | •             | 4                                     | 1873                                  | 3.5940.09E 02                         |                                                                                                        | Ġ.                          | 3 C           | 1. CE 00                                |
|        | · <b>4</b> 1  | <b>'</b>                              | CCF-1874                              | 3.79 to.12E 02                        |                                                                                                        | _                           | 22            |                                         |
|        | 064           |                                       | CC0-2169                              | 4.69 #0.07E 03                        | 3.74                                                                                                   | 4                           | <b>6</b> C    |                                         |
|        |               |                                       | 2217                                  | 6.4210.136 01                         | 0.273                                                                                                  | ው                           | 30Z           |                                         |
|        | 064-1         | _                                     | 1875                                  | 4.2310.07E 03                         |                                                                                                        | ~,                          | 4             | A. EE-01                                |
|        |               | ~                                     | 1876                                  | .52 to.06 E                           |                                                                                                        | 87.2                        | <b>7</b>      | ¥.                                      |
|        | •             | <u></u>                               | 1817                                  | .53 to.08E                            |                                                                                                        | 41                          | <b>1</b> C    |                                         |
|        | •             | •                                     | 1878                                  | 6.12 to .20 E 02                      |                                                                                                        | ~                           | ) <b>1</b>    | 4. SE-01                                |
|        | ***           | **                                    | CCF-1879                              | .10 to. 19E                           |                                                                                                        | 19.1                        | 36            | 3. 56-01                                |
| 7      | 060           | 2123-A                                | CC0-2161                              | .9610.076                             | 3.11                                                                                                   | æ.                          | 4             | G                                       |
|        | 0,0           | œ                                     | 2207                                  | .62 10.12E                            | 1.48                                                                                                   | m                           | <b>4</b> C    | 6. IE-01                                |
|        | 064           |                                       | COS-1720                              | .03 10.128                            |                                                                                                        | ~                           | 300           | 8. (E-04                                |
| _      | 055-1         |                                       | CC0-1825                              | .03 tO. 18E                           |                                                                                                        | <b>~</b>                    | ~             | 7. 1E-01                                |
|        | 7             | ~                                     | 1826                                  |                                       |                                                                                                        | e,                          | 721           | 3. IE-01                                |
|        | •             | · m                                   | 1827                                  | 4.4110.136 01                         |                                                                                                        | 41<br>41<br>61              | C             | 2.56-01                                 |

154

| TABI | TABLE E.1 (CO)   | (CONTINUED)       |                 |                        |                    | i<br>1<br>1     | * • • • • • • • • • • • • • • • • • • • | +7 +      |
|------|------------------|-------------------|-----------------|------------------------|--------------------|-----------------|-----------------------------------------|-----------|
| ARC  | LOCATION         | TLW<br>COLLECTION | 1LW<br>ANALYSIS | PU-239,240<br>ACTIVITY | URAN IUM           | Y IELC<br>IR*RE | COUNT                                   | ANAL JHON |
| !    | :<br>:<br>:<br>: | NO.               |                 | (260)                  | GRAMS )            | MORK )          | †<br>                                   |           |
| _    | 7-5-0            |                   | ġ               | .4010.04E 0            |                    | •               | 400                                     | . 16      |
| •    | - <b>L</b>       |                   |                 | .27 #0.06 E O          |                    |                 | 200                                     | , ję.     |
|      | 1-250            | 1-6236            | CC0-1820        | 2.0340.05E 03          |                    | 85.6            | 20                                      | 7.26-01   |
|      | . ~              |                   | )               | .78 to.11E 0           |                    | -               | 20                                      | • (E-     |
|      | , er             | •                 | 1822            | .65 10.03E 0           |                    | *               | 30 <b>2</b>                             | . 2E-     |
|      | 1 4              | •                 | 1 823           | .93 to. 12E 0          |                    | ň               | 20C                                     | . 2E-     |
|      | · uri            |                   |                 | .25 to .03E 0          |                    |                 | 2 C                                     | . SE-     |
|      | 057-1            |                   | CC0-1930        | .04 t0.22E 0           |                    | ë               | 3C                                      |           |
|      |                  |                   |                 | .79 to. 16E 0          |                    | •               | 26                                      | E         |
|      | , ,,             | · •               | 1832            | .14 to.04E 0           |                    | <u>:</u>        | e c                                     | . CE-     |
|      | •                | · •               | 1833            | .95 to. 18E 0          |                    | 8               | 100                                     | 4.46-01   |
|      | · w              |                   |                 | .95 to . 14E 0         |                    | ¥               | 100                                     | . 3E -    |
|      | 650              | -                 | C 14-2174       | .40:0:036 0            | ċ                  | 31.4            | 30                                      |           |
|      | 061              | _                 |                 | .25 t0.04E 0           | ~                  | 8               | ξC                                      |           |
|      | 061              | 9668-A            | 6               | .54 t0.03E 0           | 2.02               | •               | ر<br>د                                  |           |
| 7    | 850              | 2612-A            | C40-2152        | .26 t0.10E 0           | Ψ,                 | _               | Ų.                                      | 1. E-01   |
| ,    | 8 9 0            | <b>6</b> 0        | ~               | .95 to.11E 0           | 'n                 | 4               | Ų                                       | 2. TE-01  |
| ب.   |                  | 6643              | CDS-1723        | .88 to.11 E 0          |                    | e1.1            | 20                                      | •         |
|      | 034-3            |                   |                 | .04 10.46E 0           |                    | 40.6            | 400                                     | 1. CE-02  |
|      | •                |                   | 1725            | .35 tO.08 E O          |                    | 49.7            | 400                                     | . 3E      |
|      | 'n               |                   | 1726            | .48 10.04E 0           |                    | 21.3            | 300                                     |           |
|      | 046-1            |                   | 1727            | .38 t0.12E 0           |                    | *               | 30¢                                     |           |
|      | ~                |                   | 1728            | .54 t0.04E 0           |                    |                 | 26                                      | £.        |
|      | - (**)           |                   | 1729            | .5340.15E 0            |                    |                 | ٥٢                                      | 'n.       |
|      | 4                |                   | 1730            | .5410.18E 0            |                    | ¥               | 36                                      |           |
|      | •                |                   | 1731            | .89 tO.03E 0           |                    | •               | <b>V</b>                                | . te      |
|      | 010              |                   | 1732            | 30 40.08E 0            | · Are              | 39.4            | 40                                      | 1. te 00  |
|      | 010-1            |                   | 1733            | .77 t0.17E 0           | , s <sup>i</sup> c | •               | <b>V</b>                                | æ         |
|      | ~                |                   | 1734            | 1.17 to . USE OL       |                    | 48.3            | 400                                     |           |

| LEC TION ANALYSIS A NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ARC | LOCATION                   | 7 × ×              | 11.1     | -239,2             | UPANIUM | YIELC  | TKUCO        | ANAL /MON                               | NO   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|--------------------|----------|--------------------|---------|--------|--------------|-----------------------------------------|------|
| 070-3  8C49  CDS-1735  1C8  4  1734  1734  1735  1736  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  1737  174  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751  1751 |     | 1<br>1<br>1<br>1<br>1<br>1 | COLLEC :10N<br>NO. | AN       | ACT (VITY<br>(OFP) | CRAMS ) | MORK ) | THE          | *************************************** | į    |
| 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   | 6-010                      | 8649               | 73       |                    |         | 71.4   | 366          | 2. 16                                   | ជ    |
| 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı   | • • <b>•</b>               | •                  | ~        |                    |         | 48.5   | 400          | 3.36                                    | 5    |
| 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | . w                        |                    | _        |                    |         | 9.18   | <b>308</b>   | 3. CE - (                               | - 03 |
| 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | i                          | BC19               | -        | 1.28 to.21E 00     |         | 6.8.5  | <b>30</b> 2  |                                         | 0    |
| 032-1 284-1 CCD-126 -3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z   |                            | 2829               | ~        | 8.00 t6.00 E-02    |         | 40.3   | <b>)</b> ) 6 |                                         | 00   |
| 2 127 -2<br>3 128 -2<br>4 4 129<br>1 129 -1<br>2 129 -1<br>2 129 -1<br>2 2 33 4 -0<br>3 3 3 4 -0<br>3 3 3 4 -0<br>4 4 337 1<br>6 6 6 338 1<br>7 CAF - 339 1<br>7 CAF - 339 1<br>7 CAF - 339 1<br>8 2 8 3 7 1<br>2 8 3 7 1<br>2 8 6 0 0<br>2 8 7 2 2 40 3<br>3 3 3 1 3 3 1<br>4 5 6 CCF - 135 3<br>5 5 CCF - 135 3<br>6 6 6 3 3 8 6 0<br>7 CAF - 3 8 6 0<br>7 CAF - 3 8 6 0<br>8 3 3 7 1<br>8 5 CCF - 13 5 3<br>9 3 3 1 3 3 1<br>7 CAF - 3 8 6 0<br>8 3 3 7 1<br>8 6 6 6 7 1 8 6 0<br>8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 032-1                      | 2684-1             |          | -3.00 #6.00 E-02   |         | 76.4   | 302          | CA 1. CE                                | 0    |
| 2 CCF - 130 - 2<br>2 CCF - 130 - 2<br>2 CCF - 130 - 2<br>3 3 34 - 0<br>4 4 335 - 2<br>5 CCF - 130 - 2<br>3 3 3 4 0<br>4 5 337 - 1<br>5 CAF - 339 - 1<br>7 CAF - 339 - 1<br>7 CAF - 339 - 1<br>8 6 6 7 A - 2 4 2<br>8 2 8 2 6 7 A - 2 4 0<br>13 2 8 7 - 1<br>13 3 3 1 1 3 1 2 1<br>2 CCF - 135 3 3 1<br>4 5 CCF - 135 3 3 1<br>4 6 6 7 A - 2 4 0<br>13 2 8 7 1 1<br>13 3 2 2<br>13 3 3 3 1 1 3 1<br>13 4 6 7 6 7 6 7 8 3 1<br>13 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | ~                          |                    | _        | -2.00#3.00E-U2     |         | 11.2   | <b>302</b>   |                                         | 00   |
| 5 CCF - 130 2 E99-1 CAD - 334 2 2 3 3 34 4 4 6 6 139 5 CCF - 130 2 2 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | m                          | m                  | 128      | -2.0016.00E-02     |         | 75.3   | <b>20C</b>   |                                         | Ç    |
| 2 CCF - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 4                          | •                  | 129      | 1.00 16.00 E-02    |         | 76.8   | <b>466</b>   |                                         | CO   |
| 2 2 699-1 CAD-334 -0 2 3 3 336 3 4 4 337 4 5 6 6 338 7 CAF-339 1 2 2 8 3 C TA-2 42 2 2 8 6 C TA-2 40 2 2 8 6 C TA-2 40 3 3 3 1 3 3 2 4 4 5 5 C C F-1 3 5 2 2 6 8 9-1 C AD-3 2 8 2 2 2 6 8 9-1 C AD-3 2 8 3 3 3 3 3 3 1 3 5 4 5 5 C C F-1 3 5 5 5 6 C F-1 3 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | · <b>4</b> 0               | · <b>v</b>         | <b>-</b> |                    |         | 13.1   | 1000         | 2.26                                    | 00   |
| 2 335 2<br>3 3 336 4<br>4 4 337 1<br>6 6 8 338 1<br>7 CAF- 339 1<br>2 2 2 3 C TA- 2 4 2<br>2 2 2 6 C TA- 2 4 0<br>2 2 2 6 C TA- 2 4 0<br>3 3 1 3 3 2<br>4 4 4 6 C C C C T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 034-1                      | -663               | , W      | -0.50 tl. 00 E-01  |         | 72.4   | 96           |                                         | - 04 |
| 4 4 337 11 2 2 8 3 3 4 6 6 6 3 3 8 7 7 2 8 3 3 7 1 1 1 2 8 3 2 2 8 3 7 1 1 2 8 6 7 1 4 7 2 7 2 8 6 7 1 4 7 2 8 6 7 1 4 7 1 1 3 7 1 1 1 3 7 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ~                          | 7                  | 335      | 2.4040.905-01      |         | 56.5   | 300          | CA 2. EE                                | - 02 |
| 4 4 337 1<br>6 4 337 1<br>2 2 3 3 C 1 A - 2 4 2 2<br>2 2 2 3 C 1 O - 3 8 6 0<br>2 2 2 6 C 1 A - 2 4 0 3<br>2 2 2 6 C 1 A - 2 4 0 3<br>2 2 2 6 C 1 A - 2 4 0 3<br>3 3 3 1 3 3 2<br>4 4 4 6 C C P - 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | •                          | m                  | 336      | 0.0040.05E 00      |         | £1.5   | 300          |                                         | - 03 |
| 2833 CAF- 339<br>2833 CTA- 242<br>2832 CTO- 386<br>2826 CTA- 240<br>2 2836 CTA- 240<br>2 2897-1 CCD- 131<br>3 3 133<br>4 4 6 CCF- 135<br>5 CCF- 135<br>5 CCF- 135<br>5 CCF- 135<br>5 CCF- 135<br>7 139<br>7 4 6 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | •                          | 4                  | 337      |                    |         | 65.2   | 306          |                                         | - 62 |
| 2833 C1A- 339<br>2832 C1A- 242<br>2826 C1A- 240<br>2826 C1A- 240<br>2 2887-1 CCD- 131<br>3 3 133<br>4 4 4 134<br>5 CCF- 135<br>5 CCF- 135<br>5 CCF- 135<br>7 134<br>7 4 4 134<br>7 4 5 139<br>7 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | •                          | 40                 | 338      | 1.0010.606-01      |         | 71.7   | 300          | ٠.                                      | -03  |
| 2633 C TA - 242<br>2632 C TO - 386<br>2826 C TA - 240<br>2 2 2 2 3 133<br>3 3 133<br>4 4 4 4 134<br>5 C C - 135<br>5 C C - 135<br>5 C C - 135<br>7 2 8 9 - 1 C A D - 328<br>7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | ~                          | 7                  | m        | 1.5040.90E-01      |         | ¥      | 20C          | 5                                       |      |
| 2832 CTD-386<br>2826 CTA-240<br>2 2 87-1 CCD-131<br>3 3 3 133<br>4 4 4 4 134<br>5 CCF-135<br>-1 2889-1 CAD-328<br>2 2 329<br>3 3 330<br>4 4 5 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 950                        | 2833               | 7        | 2.48 tO.12E 00     |         | 51.7   | 226          | ?                                       |      |
| 2826 C14-240<br>2 2 2 2 131<br>3 3 3 3 133<br>4 4 4 134<br>5 CCF-135<br>-1 2889-1 CAD-328<br>4 4 5 331<br>4 4 5 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 040                        | 2632               |          | 0.9041.20E-01      |         | æ      | <b>500</b>   | <b>5.</b> (E                            |      |
| 2 2 8 7 - 1 CCD - 131 1 1 1 2 2 3 3 3 4 4 4 5 CCF - 135 3 2 2 2 5 CCF - 135 3 3 3 3 3 3 4 5 4 4 4 3 3 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 045                        | 2826               | ~        | 3.99 to. 326 00    |         | •      | <b>50C</b>   | 3.36                                    |      |
| 2 132 1<br>4 4 4 133 2<br>5 CCF 135 3<br>-1 2689-1 CAO-328 2<br>2 2 3 3 330 7<br>4 4 331 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1-550                      | 2 8 8 7-1          |          | .01 40.01          |         |        | 20           | 2. SE                                   |      |
| 3 133 2<br>4 4 134 1<br>5 CCF-135 3<br>-1 2 2 89-1 CAD-328 2<br>2 2 3 3 3 3 3 3 3 3 4 4 4 3 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 7                          | 7                  |          | .13 to.04E         |         | ç      | 4CC          | 7                                       |      |
| 4 4 134 1<br>5 CCF- 135 3<br>-1 2 2 89-1 CAD- 328 2<br>2 2 3 3 3 3 3 3 3 4 4 4 331 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | m                          | ~                  |          | .11 to. 14 E       |         |        | 704          | ۲.                                      |      |
| 5 CCF- 135 3<br>-1 2 E89-1 CA0- 328 2<br>2 2 3 129 7<br>3 3 3 130 7<br>4 4 331 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 4                          | •                  |          |                    |         | 0      | 30Z          | <u>.</u>                                |      |
| -1 2689-1 CAD-328 2<br>2 2 32 329 7<br>3 330 7<br>4 4 331 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | ĸ                          | Ś                  |          | .00 44             |         | 19.5   | 30C          | -                                       | •    |
| 2 3 330 7 4 531 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 046-1                      | 2 6 8 9 - 1        | ~        |                    |         | O      | 300          | CA 1. CE                                |      |
| 31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | ~                          | 7                  | ~        | .00 +5             |         | 74.4   | 724          | -                                       |      |
| 31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | · ~                        | <b>C</b>           | 330      | C# 0 5.            |         | •      | 704          | CA 1. (E                                |      |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | *                          | •                  | 331      | 1.05 to.30E 00     |         | 38.7   | 400          | CA 1. (E                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | <b>-0</b>                  | 49                 | 132      | 5.0011.006-01      |         | 32.3   | 4CC          | CA 1. CE                                | CO   |

156

| TAB          | FABLE E.1 (CONTIN                       | NTINUED)           |                        | 9                                       | ;<br>;<br>;<br>;<br>;                   | 1                                    | 1                                     |          |              |   |
|--------------|-----------------------------------------|--------------------|------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|----------|--------------|---|
| ARC          | LUCATION                                | 16 NO .<br>16 NO . | TLW<br>ANALYSES<br>NO. | PU-239,240<br>ACTIVITY<br>(DFP)         | URAN IUH<br>(P [CRQ<br>GRAMS)           | Y IELC<br>I R=RE<br>HORK )           | COUNT<br>TIME                         | ANA      | ANAL /MON    |   |
| !            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :                  | *                      | *************************************** | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | i<br>4<br>4<br>1<br>1<br>1<br>1<br>1 | · · · · · · · · · · · · · · · · · · · |          | !<br>!<br>!  | • |
| <del>,</del> | 1-950                                   | 689-7              | ,                      | .00 t0.80 E-0                           |                                         | 64.0                                 | 300                                   | 5        |              |   |
|              | C 4 8                                   | 836                | ı                      | .07 t0.04E                              |                                         | ₹0.€                                 | 100                                   | ~        | • EE-        |   |
|              | 0.50                                    | 2 8 5 8 - 1        | 141 -023               | .41 t0.04E                              |                                         | 5                                    | Ç                                     | 1-1      |              |   |
|              | ~                                       | 7                  |                        | 2 t0 . 13E                              |                                         | 15.1                                 | 30C                                   | 14       | . 2E         |   |
|              | i (rī                                   | m                  | 143                    | .03 t0.24E                              |                                         | 'n                                   | )CC                                   | 5        |              |   |
|              | 4                                       | •                  | 144                    | .48 10.22E                              |                                         | 46.1                                 | 100                                   | CA       |              |   |
|              | · •                                     | · <b>5</b>         | CF-                    | .23 10.15E                              |                                         | 48.5                                 | )<br>)<br>(                           | J        |              |   |
|              | 050-1                                   | 3576-1             | CCD- 146               | 12 10.05E                               |                                         | 71.8                                 | Ç                                     | <u>۲</u> |              |   |
|              | ~                                       |                    |                        | .28 tO. 14E                             |                                         | 19.1                                 | 20C                                   | _        |              |   |
|              | m                                       | · ~                | 148                    | .87 10.08                               |                                         | 13.4                                 | 308                                   | _        | . 1E 00      |   |
|              | 4                                       | •                  | 149                    | .35 10.21E                              |                                         | 42.0                                 | 734                                   | 5        |              |   |
|              | ď                                       | · w                | CFL                    | 46 t0.35E                               |                                         | 82.6                                 | 30°C                                  | _        |              |   |
|              | 052-1                                   | 2885-1             | CAD- 322               | .65 10. 12E                             |                                         | \$3.65                               | 30 <b>2</b>                           | ~        |              |   |
|              | ~                                       |                    |                        | .35 10.19E                              |                                         | ,                                    | ec.                                   | ,        | •            |   |
|              | m                                       | · m                | 324                    | 3310.068                                |                                         | 65.3                                 | 300                                   | •        |              |   |
|              | *                                       | •                  | 325                    | .79 10.49E                              |                                         | 11.5                                 | 100                                   | •        | •            |   |
|              | •                                       | 40                 | 326                    | .1040.23€                               |                                         | 74.3                                 | 300                                   | _        | •            |   |
|              | _                                       |                    |                        | .7610.18E                               |                                         | £4.5                                 | 308                                   | ,,,      | 1. if-c1     |   |
|              | 750                                     | 639                | C IA- 254              | .50 10.20€                              |                                         | 63.3                                 | 100                                   | •        | •            |   |
|              | 0.66-1                                  | 2894-1             | ,                      | .15 10.01E                              |                                         | 0.09                                 | <b>3</b> C                            | •••      | ٠            |   |
|              | ~                                       | ~                  |                        | .95 to. 15E                             |                                         | ~                                    | 200                                   | •        |              |   |
|              | m                                       | ~                  | 138                    | .36 to.08 E                             |                                         |                                      | 328                                   |          |              |   |
|              | +                                       | •                  | 139                    | .07 tO. 27 E                            |                                         | ~                                    | 30 <b>C</b>                           | _        | Ç            |   |
|              | *                                       | 5                  | CF-                    | .53 10.338                              |                                         | ပ                                    | 30C                                   | •        | 00 33 ·      |   |
|              | 062-1                                   | 2641-1             | 99 -000                | 84 10.12E                               |                                         | 69.0                                 | ~                                     |          | ). EE CO     |   |
|              | ~                                       | ~                  | 67                     | .64 10.02E                              |                                         | ~                                    | 328                                   | _        | U            |   |
|              | m                                       | m                  | 6.8                    | .4910.16E                               |                                         | ~                                    | 400                                   | _        | . ≥ 00<br>00 |   |
|              | •                                       | ~                  | 69                     | .8710.04E                               |                                         | ~                                    | JCC                                   | _        | 0            |   |
|              | ĸ٦                                      | 50                 | CCF- 70                | .05 10.13€                              |                                         | •                                    | )) <b>?</b>                           |          | 10-31 ·      |   |

| TABI        | TABLE E.1 (CONTIN     |                                                     |            |                  | 1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0 |            |               |           |            |
|-------------|-----------------------|-----------------------------------------------------|------------|------------------|-------------------------------------------|------------|---------------|-----------|------------|
| ARC         | LOCATION              | 7. X                                                | 76.6       | PU-239,240       | URANIUM                                   | Y JEL C    | CO U!! T      | ANAL JHOY |            |
|             |                       | COLLEC 11 ON                                        |            | ACTIVITY         |                                           | *          | I IM          |           |            |
|             |                       |                                                     | NC.        | (052)            | GRJHS)                                    | TORK)      |               |           | į          |
| †<br>†<br>† | 6<br>7<br>6<br>7<br>7 | 7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |            |                  |                                           |            |               |           |            |
| z           | 064-1                 | 2628-1                                              | CAD- 310   | 3.28 to. 12E 01  |                                           | 14.7       | <b>5</b> 00   | O         | 0          |
| :           |                       | ~                                                   |            | .5310.05         |                                           |            | ž             | ပ         | 0          |
|             | . "                   | , ec                                                | 312        | .7240.04E        |                                           | 14.1       | 301           | Ų         | U          |
|             | ٠.                    | •                                                   | 313        | 6 10.03          |                                           | 61.5       | 2             | 1.26 0    | 0          |
|             | • ~                   | • •                                                 | 316        | .60 to. 17 E     |                                           | 81.1       | 2C í          | ш<br>С    | _          |
|             | , ~                   |                                                     | CAF- 315   | .00 to. 17E      |                                           | 58.7       | <b>30</b> 0   | m<br>0    | 0          |
|             | 046                   | 005                                                 | C 1A- 247  | .49 10.20E       |                                           | 75.t       | 7.            | 1         | _          |
|             | 066                   | 8642                                                | CO S-1007  |                  |                                           | £9.5       | ×             |           | 0          |
|             | 0.68                  | 2837-A                                              | CCD-2163   | .43 to. 11 E     | 2.81                                      | 78.5       | 4             | •         | _          |
|             | 068-3                 | M                                                   | 2127       | 1.47 10.04 6 02  | 0.189                                     | 15.5       | )<br>)<br>(   | 0         | ပ          |
|             | •                     | ₩                                                   | 2128       | .96 40.126       | 0.835                                     | 11.1       | <u>)</u>      |           | _          |
|             | ***                   | . 47                                                | CF         | .21 tO. 15E      | 0 515                                     | 50.1       | <b>3</b> CC   | 6. 1E-C   | _          |
|             | 070-1                 | 2831-1                                              | CAD- 316   | .30 to.07E       | •                                         | 62.4       | <b>9</b> 0    | 0         | 0          |
|             | 7                     | )                                                   |            | .91 40.31 £      |                                           | 11.1       | ¥             | 01        | _          |
|             | , (**                 | •                                                   | 316        | 87 to.09 E       |                                           | 14.1       | 7             | 1. 1E C   | 0          |
|             | •                     | •                                                   | 319        | .06 10.04 €      |                                           | 15.6       | <b>4</b> C    | 31        | 0          |
|             | •                     | •                                                   | 320        | .98 to. 16E      |                                           | ~          | 3             |           | _          |
|             | . ~                   | •                                                   |            | .70 to.09E       |                                           | <b>49.</b> | )<br><b>(</b> |           | 0          |
|             | 012                   | 6                                                   | C TA - 245 | u                |                                           | 710.7      | ĭ             | 3. E-C1   | _          |
|             | 074-1                 | 2630-1                                              |            | .24 tO. 14E      |                                           |            | )<br>)<br>(   | 3.1E 00   | 0          |
|             | ~                     | 1                                                   |            | .41 to. 16 E     |                                           |            | <b>9</b> CC   |           | 0          |
|             | •                     | (47)                                                | 73         | #0.07E           |                                           | 5.52       | )<br><b>+</b> |           | 0          |
|             | , <b>-</b>            | •                                                   | ~          | .67 40.22E       |                                           | # 6 P      | <b>3</b> 5    | Ę,        | _          |
|             | ٠ 🕶                   | . ac.                                               |            | 40.22E           |                                           | 73.C       | <b>3</b> 06   |           | . مــ      |
|             | 078                   |                                                     | C14- 246   | 2 40 . 10 E      |                                           | 11.4       | )<br>)        | ). te-0   | 5          |
|             | 1-080                 | 2 12 7-1                                            |            | .9540.096        |                                           | £ 1 · 3    |               |           | ٥.         |
|             | ~                     | ~                                                   | 9          | .94 to. 11E      |                                           |            |               | 4. 25-    | <b>~</b> ( |
|             | <b>(F7)</b>           | ~                                                   | 63         | 2 10 . 22 €      |                                           | 7 - 2      |               |           | э.         |
|             | •                     | •                                                   | <b>\$</b>  | 2.38 to. 10 E 00 |                                           | "          | 2             | 3. (8-    | _          |

| TAB | TABLE E.1 (CO) | (CONTINUED)       | 1     | 1               | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  | 1             |          |            |   |
|-----|----------------|-------------------|-------|-----------------|---------------------------------------|-----------------------------------------|------------------|---------------|----------|------------|---|
| ARC | LOCATION       | TLY<br>COLLECTION |       | TLN<br>ANALYSIS | FU-239,240<br>ACTIVITY                | UABN IUN<br>EP ICRO                     | Y IELC<br>I R=RE | COUNT<br>TIME | ANA      | ANAL MON   |   |
|     | 1              | .ON               |       | •               | (0FF)                                 | GRAMS)                                  | WORK 1           | ;             |          | 1          | • |
| 2   | £ 1000         | 3627-5            | - 500 | \$ 9            | 3.6310.128 00                         |                                         | 82.6             | 2001          | •        | 9. (E - 01 |   |
|     | 7 1 4 5 5      | 2 C C E - 1       | - 6   | } -             | 5 .00 14 . CO E -02                   |                                         | 61<br>61<br>60   | 1000          | _        | . CE-02    |   |
|     | • <b>~</b>     | ~                 | )     | ۰ ۲             | 4.9510.15E 00                         |                                         | 18.1             | 1000          | ,_       | 7. CE-01   |   |
|     | , ~            |                   |       | · m             | 6.4210,18£ 00                         |                                         | 74.2             | 100           | •        | 10-33:     |   |
|     | •              | •                 |       | 4               | 9.1010.606-01                         |                                         | 15.5             | 1000          |          |            |   |
|     | - 41           | . <b>w</b> .      | CCF-  | 'n              | 8.97 to. 22E 00                       |                                         | 80.9             | 1000          | _        | • 3E 00    |   |
|     | 020            | 2014              | C 10- | 383             | 7.0011.00E-01                         |                                         | 65.5             | 400           | ~        | 1. LE 00   |   |
|     | 0 1 2          | \$ 5 5 E          |       | 407             | 5.58 10.15E 04                        |                                         | 10.4             | 2             | •        | 1. 2E CO   |   |
|     | 032-1          | 2082-1            | -000  | 46              | 2 - 70 +1 - 90 6 -01                  |                                         | 30.78            | 200           | _<br>უ   | • (E C0    |   |
|     |                | •                 | ,     | ) N-            | 2.5010.21E 00                         |                                         | 82.1             | <b>5</b> 00   | ₹        | 1. (E 00   |   |
|     | ,              | , ,               |       | · 4             | 1 - 90 to - 30 8 - 01                 |                                         | 73.3             | 306           | •        | 3. (6-02   |   |
|     | • •            | •                 |       | 65              | 1.20 11.30 6-01                       |                                         | 21.3             | 3CC           | •        | 3. (E-C2   |   |
|     | * 41           | **                |       | 50              | 4.1011.00 6-01                        | 0.420                                   | 51.5             | <b>500</b>    | ~        | 1. (E-03   |   |
|     | 014            | 8645              |       | 408             | 4.3410.11E 04                         |                                         | 11.9             | <u>۲</u>      | •        | 10-31      |   |
|     | 024-1          | 2019-1            | -000  | 11              | 3.00 14.00 E-02                       |                                         | 9.19             | 1000          | , -      | 7. (E-03   |   |
|     | ~              | 7                 |       | 12              | 3.0610.136 00                         |                                         | 64.0             | 100           | <br>3    |            |   |
|     | . ~            | · ~               |       |                 | 1.5010.40E-01                         |                                         | 64.6             | 1001          | •        | •          |   |
|     | •              | •                 |       | *               | 0.6012.608-01                         |                                         | 31.6             | 1000          | _<br>ქ   |            |   |
|     | •              | •                 |       | 15              | 2.1010.406-01                         |                                         | 66.8             | 1001          | •        | 7          |   |
|     | 1-520          | 2CB0-1            | CAD   | 286             | 2.1510.076 01                         |                                         | 86.5             | 300           | <u>ა</u> | . 16 Cì    |   |
|     |                | ~                 |       | 287             | 1.3310.066 01                         |                                         | 77.4             | 300           | _        |            |   |
|     | الله و         | -                 |       | 208             | 5.0016.00 6-02                        |                                         | 13.6             | 300           | <u>ა</u> |            |   |
|     | 1 4            | •                 |       | 233             | .4110.108                             |                                         | 46.6             | <b>3</b> 36   | <u>ح</u> |            |   |
|     | • •            | . 40              |       | 230             |                                       |                                         | 59.1             | 300           | _<br>ქ   | 10-3)      |   |
|     | , ~            | . ~               |       | 162             | 3.0012.501-01                         |                                         | 40.0             | 300           | _<br>J   |            |   |
|     | 0.16           | 2643              |       | 233             | 184,010.45                            |                                         | 1.4.2            | <b>307</b>    | ,1       |            |   |
|     | 90             | 80.15             | CD 5- | 409             |                                       |                                         | 71.2             | ><            | _        | 10 31 .    |   |
|     | 8.0            | •                 |       | 010             | 1.2210.036 05                         |                                         | 41.1             | ۶۲            | _        |            |   |
|     | 0.28-1         | 1-6752            | -000  | 13              | 6.7010.411 00                         |                                         | 40.5             | )<br>)<br>(   | _        | 00 €.      |   |
|     | , , ,          |                   |       |                 |                                       |                                         |                  |               |          |            |   |

| TABI | TABLE E.1 (CO)                          | (CONTINUED)              |                 |                        | 9<br>9<br>9<br>9<br>9<br>9 | 1               |             |          |
|------|-----------------------------------------|--------------------------|-----------------|------------------------|----------------------------|-----------------|-------------|----------|
| ARC  | LOCATION                                | TLW<br>TLW<br>COLLECTION | TLW<br>ANALYSIS | FU-239,240<br>ACTIVITY | URAN TUM<br>THECRO         | Y IELC<br>(Rare | COUNT       | ANAL MON |
| 1    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NO.                      | NO.             | (OPF)                  | GRAMS 1                    | WORK )          |             |          |
| a.   | 038-2                                   | 2619-2                   | CCD- 42         | 3.3010.086 01          |                            | 45.1            | u           |          |
|      | · ~                                     | , m                      |                 | 4 10.526               | 0.221                      | 41.7            | 3CC         | 6. (E-   |
|      | 4                                       | 4                        | 55              | .1041.208-             |                            | 7-84            |             |          |
|      | 'n                                      | 5                        |                 | .52 to.17E             |                            | 63.7            | J           |          |
|      | 040-1                                   | 2C77-1                   | CAD- 280        | .22 to.07E             |                            | 80.2            |             |          |
|      | 7                                       | ~                        |                 | .26 tO.21 E            |                            |                 | 100         | 9. SE-01 |
|      | C                                       | m                        | 282             | .4310.146              |                            | 58.7            |             |          |
|      | 4                                       | 4                        | 283             | .2040.536              |                            | 44.2            | S           |          |
|      | •                                       | 9                        | 284             | .44 t0.21€             |                            | £8.1            | U           | 5. (E-C2 |
|      | ~                                       | 7                        |                 | .23 40.228             |                            | 70.5            |             | 6. (E-C1 |
|      | 042                                     |                          |                 | .93 to. 14E            |                            | 75.4            | ပ           | 5. 1E-01 |
|      | 045                                     | 8645                     | COS- 411        | .05 tU.02E             |                            | 11.5            | 36          | 4.4E CC  |
|      | 044                                     |                          | 415             | 10.21E                 |                            | ₹3.€            | 75          | 1. E CO  |
|      | 044-1                                   | 2 C 8 9 - 1              | 15 -000         | 31E                    |                            | 14.5            | 100         | 3. (E    |
|      | 7                                       |                          | 25              | .36 tO.11E             |                            | 16.1            | 1000        | 4.36     |
|      | m                                       | m                        | 53              | 390                    |                            | 50.1            | <b>30</b> 2 | 3. (6    |
|      | •                                       | *                        | 54              |                        |                            | 67.3            | <b>307</b>  |          |
|      | **                                      | <b>v</b> n               |                 |                        |                            | £9.6            | <b>308</b>  | 1. E-C1  |
|      | 1-950                                   | 2090-1                   | CAO- 304        |                        |                            | 15.1            | ¥           |          |
|      | ~                                       | ~                        |                 | •••                    |                            | 63.4            | )<br>)<br>( |          |
|      | M                                       | •                        | 306             | .40 t0.04E             |                            | 72.4            | 7           | <b>O</b> |
|      | ~                                       | •                        | 307             | 301.04.32.             |                            | 66.5            | <b>3</b> 00 | 9.26     |
|      | •                                       | •                        | 308             | •••                    |                            | 35.58           | 20C         | ۶.<br>ج  |
|      | _                                       | 7                        |                 | .46 10.49€             |                            | 59.3            | <b>300</b>  | 8.58     |
|      | C16-A                                   | 8643                     | CDS-1054        | 10.16E                 |                            | 12.1            | ×           | 1.48     |
|      | Ø                                       |                          |                 | .57 10.246             |                            | 1.11            | <u> </u>    | 5.46     |
|      | 0 4 8                                   |                          | m               | 10.01E                 |                            | 11.0            | 36          | 7. 6     |
|      | 050                                     | 9645                     | COS- 414        | 5.5510.15E 04          |                            | 2.59            | <b>5</b> 2  | 3.46 60  |
|      | 1-750                                   | _                        | ~               | 10.0%E                 |                            | 40.4            | ĭ           | ٠.       |

| TAB | TABLE E.1 (CO | (CONTINUED)              |                        |                                         |                             | 1                        | •             | 0<br>0<br>0<br>0<br>0<br>0                | _ |
|-----|---------------|--------------------------|------------------------|-----------------------------------------|-----------------------------|--------------------------|---------------|-------------------------------------------|---|
| ARC | LOCATION      | TLW<br>COLLECTION<br>NO. | TEM<br>ANALYSES<br>NO. | PU-239,240<br>ACTIVITY<br>(0FP)         | UPANIUM<br>(MICRO<br>GRAMS) | Y IELC<br>(R=RE<br>MORK) | COUNT<br>TIME | ANAL MON                                  |   |
| 1   |               |                          | *                      | • • • • • • • • • • • • • • • • • • • • | •                           |                          |               | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |   |
| ے   | 052-2         | 2087-2                   | CAD- 299               | .14 to.04 E O                           |                             | 78.4                     | ٦٢            |                                           |   |
|     | · •           |                          |                        | .34 to .33E 0                           |                             | 14.6                     | ٢             |                                           |   |
|     | •             |                          | 301                    | .06 40.128 0                            |                             | 46.8                     | 306           | 1.18 00                                   |   |
|     | •             | ÷                        | 305                    | .02 10.08E G                            |                             | 60.48                    | 300           |                                           |   |
|     | ~             | ~                        |                        | .72 t0.08E 0                            |                             | 0                        | 20C           |                                           |   |
|     | 950           | 2019                     | C14- 232               | .22 tO . 13E O                          |                             | •                        | >             |                                           |   |
|     |               | 8645                     | 7                      | .32 to.13£ 0                            |                             | 4                        | ٢             |                                           |   |
|     | 60            | •                        |                        | .18 to. 16 E O                          |                             | ä                        | 21            |                                           |   |
|     | 950           |                          | 416                    | 8 E O                                   |                             | 60.1                     | <u>ب</u>      |                                           |   |
|     | 1-950         | 2054-1                   | CC0- 36                | 7E 0                                    |                             | 89.4                     | 200           |                                           |   |
|     | ~             |                          |                        | 46 0                                    | •                           | ~                        | 308           |                                           |   |
|     | · ~           | 6                        | 38                     | 5E 0                                    |                             | 6                        | 300           | 1.26 00                                   |   |
|     | *             | *                        | 39                     | 5F 0                                    |                             | ~                        | 30 <b>2</b>   |                                           |   |
|     | *             | *                        | CCF- 40                | 4.02 to. 126 01                         |                             | 30.6                     | 300           | 4.16-01                                   |   |
|     | 058           | 8645                     | CDS- 417               | 8E 0                                    |                             | •                        | <u> </u>      |                                           |   |
|     | 058-1         | 2084-1                   |                        | 9E 0                                    |                             | 41                       | Š             | , (A                                      |   |
|     | ~             | ٠.٠                      |                        | 38 0                                    |                             | ŝ                        | 37            | 2. žE 00                                  |   |
|     | (17           | m                        | 567                    | 5E 0                                    |                             | 67.3                     | "             |                                           |   |
|     | •             | •                        | 295                    | 6E 0                                    |                             | ÷                        | 400           | J, (E                                     |   |
|     | • •           | 4)                       | 296                    | 4E 0                                    |                             | *1                       | 200           | CA 4,4E 01                                |   |
| •   | 2             | ~                        |                        | 9 6                                     |                             | ٦,                       | 20C           | •                                         |   |
|     | 040           | 2081                     |                        | 0 30                                    |                             | 11.1                     | 3 C           | ٠                                         |   |
|     | 1-070         | 2053-1                   | CC0- 31                | .45 10.01 E O                           |                             | ~                        | 100           |                                           |   |
|     | ~             |                          |                        | .3640.046 0                             |                             | 82.3                     | 30 <b>2</b>   | ۳,                                        |   |
|     | •             | •                        | 33                     | .95 to.09E 0                            |                             | 30.5                     | ect           | ۳.                                        |   |
|     | •             | *                        | 34                     | .8710.43E 0                             |                             | ¥                        | 3C C          |                                           |   |
|     | ***           | 5                        | CF-                    | .03 10.10E                              | 016.0                       | 22.4                     | 200           | ÷                                         |   |
|     | 062           | 8645                     | 0.5-1                  | 0 390.0110.                             |                             | 54.1                     | ĭ             |                                           |   |
|     | 042-1         | 2020-1                   | 91 -000                | .50 10.07E 0                            |                             | 64.6                     | 100           | 1.46 00                                   |   |
|     |               |                          |                        |                                         |                             |                          |               |                                           |   |

161

| TAB | TABLE E.I (CCNTTNUED) | MINUED)    | 1            |            |                        | † † † † † † † † † † † † † † † † † † † | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1                   |              |            |                              |
|-----|-----------------------|------------|--------------|------------|------------------------|---------------------------------------|-----------------------------------------|---------------------|--------------|------------|------------------------------|
| ARC | ARC LCCATION          | COLLECTION | TLM          | ¥          | FU-239,240<br>ACTIVITY | URANJUR<br>I P I CRO                  | Y 1ELC<br>(A*RE<br>WORK)                | COUNT               | ANA          | ANAL /MON  |                              |
| •   |                       | •          |              |            |                        |                                       |                                         |                     |              |            | •                            |
| a,  | 062-2                 | 2620-2     | -622         | 17         | .1440.026              |                                       | 75.1                                    | 309                 | -            | 7-16 0     | _                            |
| ŗ   | •                     |            |              | <b>6</b> 0 | 2.7040.05E 01          |                                       | 4                                       | 100C                | 7            | 0 32.      | ~                            |
|     | ) <del>«</del>        | •          |              | 19         | .58 40.156             |                                       | 71.9                                    | 1000                | <b>,,,4</b>  | . 1E 0     | _                            |
|     | · Kn                  |            | CCF.         | 20         | 1.06 #0.07E 01         |                                       | 35.9                                    | 300                 | -            | . ie c     | _                            |
|     | 064-1                 |            | CAO-         | 258        | .02 t0,02 E            |                                       | 75.4                                    | 5¢                  | •            | ٠<br>ا     | ~ .                          |
|     | ~                     | ~          |              | 257        | .03 #0.036             |                                       | 8                                       | Š                   | <b>40</b>    | . 16-0     | _                            |
|     | M                     | ~          |              | 258        | .45 #0.27              |                                       | 4                                       | <b>3</b>            | €            | . 25-0     | _                            |
|     | •                     | 4          |              | 259        | .27 tO. 12E            |                                       | ີ                                       | 100                 | _            | • 4E - C   | _                            |
|     | •                     | •          |              | 260        | .4610.426              |                                       | 51.5                                    | 20C                 | •            | 0-3)       |                              |
|     | ~                     |            | CAF-         | 261        | .40 40.07 E            |                                       | •                                       | <b>5</b> 0 <b>c</b> | ~            | . (E-0     | -                            |
|     | 066                   | 413        | - 41 J       | 239        | 2.38 t0.07E 02         |                                       | 9                                       | 30                  | m            | • EE-0     | _                            |
|     | 0.68                  | C45        | <b>COS</b> - | 814        | .96 40 - 14'           |                                       | €9.€                                    | 2                   | 4 <b>4</b> 4 |            | ~                            |
|     | 068-1                 | 2643-1     | -000         | 12         | 1840.0481.             |                                       | ٠                                       | 20C                 | ~            |            | $\sim$                       |
|     | ~                     |            |              | 22         | .39 40 . 176           |                                       | ~                                       | <b>60C</b>          | <b>-</b>     |            | ·                            |
|     | e en v                | m          |              | 23         | 1.37 to.08E 01         | 0.860                                 | •                                       | 20C                 | e=4          |            | Ÿ                            |
|     | •                     | *          |              | 2.4        | 3.88 to.13£ 00         |                                       | •                                       | 1000                | •            | 4          | _                            |
|     | ٠ •                   |            | CCF-         | 25         | 7.64 to . 19E 00       |                                       | 85°¥                                    | 1000                | ~            |            | _                            |
|     | 213                   | 685        | C 1A-        | 237        | 5.3340.168 01          |                                       | ÷                                       | ၁<br>၂<br>၂         | m ·          |            | ~                            |
|     | 074                   | 683        | C 10-        | 385        | 1.03 #0.02E 02         |                                       | <b>~</b>                                | 20C                 | •            |            | _                            |
|     | 074-1                 | 2647-1     | -023         | 26         | 2.3042.60E-01          |                                       | ٠                                       | 200                 | •            | • (E - C   | •                            |
|     | ~                     | ~          |              | 2.7        | 4.00 +8.00 E-02        |                                       | 74.5                                    | 300                 | بر<br>ح      | ָשַ י      | ~                            |
|     | •                     | 19         |              | 2.8        | 4.60 t0.80 E-01        |                                       | ÷                                       | 20C                 | <br>~        | ₩.         | _                            |
|     | •                     | *          |              | 53         | 0.9011.106.0           |                                       | ~                                       | <b>502</b>          | 4            |            | $\boldsymbol{\underline{-}}$ |
|     | **                    |            | CCF-         | 30         | 1.26 to. 13E 00        |                                       | •                                       | 300                 | _            | 1 · (E - C |                              |
|     | 0.36-1                | 2644-1     | CA0-         | 292        | 3.54 to.06E 03         |                                       | -                                       | 100                 | لاس          |            | _                            |
|     | ~                     | 174        |              | 263        | 4.17 10.15 01          |                                       | ₩                                       | <b>1</b> 0¢         | Φ.           |            | _                            |
|     | er?                   | m          |              | 264        | 1.98 to. 106 ol        |                                       | ~                                       | <b>3</b> 0 <b>C</b> | <b>(</b> **  |            | _                            |
|     | · •                   | 4          |              | 265        | .38                    |                                       | 41.1                                    | <b>3</b> 2 <b>7</b> |              | •          |                              |
|     | • <b>•</b> 0          | •          |              | 266        | 7 40.08 E              |                                       |                                         | 306                 | <b>-</b>     | . (E 0     | ~                            |
|     |                       |            |              |            |                        |                                       |                                         |                     |              |            |                              |

162

| TAB | TABLE E.1 (CO)                        | (CONTINUED)           |                         |                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0          | 1                |    | 1<br>1<br>1<br>1<br>2 |
|-----|---------------------------------------|-----------------------|-------------------------|--------------------------------------|-------------------------------------------|--------------------------------|------------------|----|-----------------------|
| ARC | LOCATION                              | אסי<br>ורא<br>ורא     | TLW<br>ANALYSI S<br>NO. | FU-239,240<br>ACTIVITY<br>(DPF)      | UN BN IUM<br>UN ICRU<br>CRAMS D           | Y IEL C<br>I R = R E<br>WORK ) | COUNT<br>TIME    |    | ANAL JKON             |
|     | † † † † † † † † † † † † † † † † † † † | !<br>!<br>!<br>!<br>! |                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | • • • • • • • • • • • • • • • • • • •     |                                | :<br>:<br>:<br>: |    |                       |
| ٩   | 1-910                                 | 2 C 4 4 - 1           | AF- 26                  | .03 #0.20                            |                                           | £ 6 . 4                        | <b>5</b> 00      |    | 1. CE-C1              |
|     | 078                                   | 2078                  | - 2                     | .42 t0.18E 0                         |                                           | 73.3                           | 9<br>U           |    | 5. (E-01              |
|     | 062-1                                 | C48-                  | A0- 2                   | .41 tO.08 E                          |                                           | ~                              | 20               |    | 1.46 00               |
|     | ~                                     |                       | 569                     | 4.70 to. 30 E 00                     |                                           | •                              | <b>5</b> 00      | చ  | 5. CE 00              |
|     | -                                     | •                     | 270                     | .90 to . 15 E                        |                                           |                                | 100              |    | 6. SE-01              |
|     | •                                     | •                     | 271                     | 6.20#0.63E 00                        |                                           | 25.5                           | 200              | 3  | 6. (E 00              |
|     | •9                                    | •                     | 272                     | .75 40.                              |                                           | ~                              | 300              |    | 2. CE 00              |
|     | _                                     | _                     | 7                       | .64 10,                              |                                           | 64°C                           | 300              |    | 2. (E-01              |
|     | 930                                   | 2027                  | ~                       | .83 40.                              |                                           | 72.6                           | 100              |    | 4 . 4E - C2           |
|     | 0.86-1                                | 2015-1                | \$ -000                 | 8.65 to. 13E 01                      |                                           | 75.7                           | 1001             |    | 2. EE 00              |
|     | ~                                     |                       | 1                       | .35 #0.                              |                                           | 52.7                           | 10cc             |    | 2.CE 00               |
|     | m                                     | ~                     | <b>6</b> 0              | .9340,                               |                                           | 73.3                           | 1000             | ζ. | 3. CE 00              |
|     | *                                     | •                     | σ                       | .00 10.                              |                                           | 75.4                           | 1000             | _  | 1. CE-01              |
|     | ٧n                                    | 'n                    |                         | .03 40.                              |                                           | 84.0                           | locc             |    | 7. (E-C1              |
|     | 068-1                                 | 1-1527                | CAD- 274                | 6.90 t0.90 E-01                      |                                           | 93.0                           | 300              | 3  | 1. CE 00              |
|     | ~                                     | 7                     | ~                       | 3.88 to.33E 00                       |                                           | 20.0                           | 302              |    | 1 - SE - C2           |
|     | m                                     | m                     | 276                     | 5.85 t0.30 00                        |                                           | 80.3                           | 300              |    | 6. (E CO              |
|     | 4                                     | 4                     | 277                     | 1.35 +0.13 € 00                      |                                           | 78.4                           | 300              | చ  | 1. (E 00              |
|     | •                                     | •                     | 278                     | .40 10.                              |                                           | 1.51                           | 300              |    | 1. (E CO              |
|     | -                                     | ~                     | CAF- 279                | 1.0740.346 00                        |                                           | 24.3                           | <b>30</b> €      |    | 8. CE-01              |
|     | 068-1                                 | 2091-1                |                         | 0.50 #1.00 E-01                      |                                           | 65.3                           | ))\              | 3  | 1. CE CO              |
|     | ~                                     |                       | 57                      | .0047.                               |                                           | 75.0                           | 104              |    | 1. (E- C2             |
|     | æ                                     | ٣                     | 58                      | .31 40.                              |                                           | 74.2                           | 400              |    | 3. (E-01              |
|     | •                                     | 4                     | 53                      | .50 40,                              |                                           | 76.2                           | 400              | చ  | 1. (E 00              |
|     | w:                                    | 80                    | CF-                     | 300.1401.                            |                                           | 81.4                           | 3C C             |    | 1. (E CO              |
|     | 050                                   | 2088                  |                         | .30 10.                              |                                           | 6.6.8                          | <b>30</b> 2      |    | 2. (E-01              |
|     | 011                                   | 4020                  | 1-50                    | 3711.036                             |                                           | 82.5                           | <b>4</b>         |    | 1.46 00               |
| œ   | 000                                   | 2529                  | 5                       | .55 10.27                            |                                           | 48.6                           | <b>300</b>       |    | 5. CC-01              |
|     | 01%                                   | 2530                  | 3.08                    | 10 341.0158.5                        |                                           | 11.5                           | 30°C             |    | 5. te-cl              |

| TABI | TABLE E.1 (CO)                          | (CONTINUED)                             |                       |     | 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>1<br>1<br>1               |                | 8<br>9<br>9<br>1 |
|------|-----------------------------------------|-----------------------------------------|-----------------------|-----|-----------------------------------------|-----------------------------------------|--------------------------------|----------------|------------------|
| ARC  | LOCATION                                | TCW<br>COLLECTION<br>NO.                | TIN<br>ANALYSI<br>NO. |     | FU-239,240<br>AC11VITY<br>(DFF)         | UPAN IUN<br>(PICRO<br>GRAMS)            | Y 1ELC<br>IR*RE<br>WORK 1      | COUNT<br>TIME  | ANAL JHOR        |
| !    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |     | **********                              | # # # # # # # # # # # # # # # # # # #   | <br> -<br> -<br> -<br> -<br> - |                |                  |
| Q    | 0.26-1                                  | 1-1856                                  | -073                  | 16  | 4.65 t0.05E 02                          |                                         | 78.0                           | 200            |                  |
| ٤    | ,                                       | 2                                       | )<br>)                | 77  | 1.02 #0.01E 02                          |                                         | 71.3                           | 300            | 2. žE C0         |
|      | · ~                                     | · en                                    |                       | 18  | 8.1640.24E 01                           |                                         | 74.5                           | 300            |                  |
|      | •                                       | 4                                       |                       | 19  | 8.9440.46E 00                           | 0.800                                   | 23.0                           | 200            |                  |
|      | · w                                     | · w                                     | CCF-                  | 80  | 2.30 #0.05E 01                          |                                         | 76.5                           | )) <b>3</b>    | <b>4</b>         |
|      | 0.50                                    |                                         | C 14-                 | 248 | 4.3240.11E 02                           |                                         | 71.6                           | 36             | 4                |
|      | 0.56                                    | 7778                                    | CDS-                  | 393 | 7.5340.18E 04                           |                                         | 62.5                           | 21             | <u>ب</u>         |
|      | 034-1                                   |                                         | CAD                   | 364 | 1.8240.05E 02                           |                                         | 8 J . E                        | 30             |                  |
|      | ,                                       |                                         | !                     | 365 | 2.6840.08£ 02                           |                                         | 70.7                           | 36             |                  |
|      | •                                       | m                                       |                       | 366 | 1.95#0.06E 02                           |                                         | 32.2                           | 36             |                  |
|      | •                                       | · •                                     |                       | 367 | 1.0140.038 02                           |                                         | 70.4                           | <b>1</b> cc    |                  |
|      | · •C                                    | <b>.</b>                                |                       | 368 | 4.1340.138 01                           |                                         | 57.1                           | <b>704</b>     |                  |
|      | -                                       | -                                       | CAF                   | 696 | 4.5940.17E 01                           |                                         | 40.E                           | <b>3</b> CC    |                  |
|      | ٠,                                      | 8644                                    | -503                  | 394 | 4.2240.118 04                           |                                         | 70.4                           | <u>ح</u>       |                  |
|      | 0 2 8                                   |                                         |                       | 395 | 4.9340.07E 04                           |                                         | 85.3                           | 3 C            | <u>ب</u>         |
|      | 040                                     | 2538                                    | C 10-                 | 389 | 1.2340.028 03                           |                                         | 30.3                           | Ç              | . Æ-             |
|      | 040                                     | BC44                                    | <b>COS</b> -          | 396 | 4.1640.06E 04                           | 0.620                                   | 13.5                           | )<br>(         | <u>.</u>         |
|      | 040-1                                   | 2 5 4 4 - 1                             | C 40-                 | 346 | 1.97 t0.06E 01                          |                                         | 19.1                           | <b>4</b> 00    | ب<br>د د         |
|      |                                         | ~                                       |                       | 347 | 1.27 to.04E 02                          |                                         | 11.1                           | ٔ د            | <b>.</b>         |
|      | •                                       | e                                       |                       | 348 | 1.33 to.06E 02                          |                                         | 2° ° °                         | <b>3</b> 0C    | بر<br>ا          |
|      | -                                       | 4                                       |                       | 349 | 6.5540.26E 01                           |                                         | £0.8                           | 100            | ۳:               |
|      | •                                       | ₩                                       |                       | 350 | 2.7140.12E 01                           |                                         | 46.1                           | 2 C C          | ۳;               |
|      | _                                       | ~                                       | CAF-                  | 351 | 3.0240.09£ 01                           |                                         | 72.1                           | 20<br>00<br>00 | • ZE-            |
|      | 042                                     | 5628                                    | C 1A-                 | 252 | 1.4240.038 02                           |                                         | 17.4                           | )<br> <br>     |                  |
|      | 042                                     | 6644                                    | C0 S-                 | 397 | 3.2540.08E 04                           |                                         | W . W .                        | )<br>          |                  |
|      | 044                                     |                                         |                       | 396 | 2.5240.06E 04                           |                                         | 25.4                           | <u>.</u>       |                  |
|      | 0.46                                    |                                         |                       | 399 | 2.12 to.05E 04                          |                                         |                                | ) (            |                  |
|      | 0 4 50                                  | 5 6 9 3                                 | C 14-                 | 283 | 6.0340.18E 01                           |                                         | 7.07                           | ب<br>د         | 10-27-6          |
|      | 048                                     | 8044                                    | CD S-                 | 400 | 1.1240.036 04                           |                                         | 9.2.4                          | <b>,</b>       | ( , JE V         |

| TABI | TABLE E.1 (CONTINU                      | (TINUED)          |                  |                        | 9<br>8<br>8<br>9<br>9 | 1                        | ;<br>;<br>;         | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
|------|-----------------------------------------|-------------------|------------------|------------------------|-----------------------|--------------------------|---------------------|-----------------------------------------|
| ARC  | LOCATION                                | TLW<br>COLLECTION | TLW<br>ANALYSI S | PU-239,240<br>ACTIVITY | CRANIUM<br>FYICRO     | Y IELC<br>(R=RE<br>WORK) | COUNT<br>11ME       | ANAL JHON                               |
|      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   |                  |                        |                       |                          |                     | *************************************** |
| œ    | 0-0-0                                   | 2536-1            | 18 -022          | 6.9740.17E 00          |                       | 81.0                     | 1000                |                                         |
| :    | 7                                       | ~                 |                  | .7940.06E              |                       | 8C.4                     | 300                 | 4. 56                                   |
|      | · m                                     | •                 | 63               | .1440.03E              |                       | 83.5                     | )<br>)<br>)         | CA 1.1E 01                              |
|      | •                                       | 4                 | 48               | .02 #0.04 €            |                       | 3.08                     | <b>)</b> ) 5        | 2.2E                                    |
|      | 'n                                      | *                 | CCF- 85          | 1.47 tO.15E 00         |                       | 76.C                     | <b>3</b> 00         | CA 1. (E CO                             |
|      | 0.52-1                                  | 2548-1            | 40- 3            | .20 #1. 40E-           |                       | 23.6                     | 400                 | 1. Œ                                    |
|      | ~                                       | 7                 | ~                | .74 tO.16E             |                       | 46.5                     | 400                 | <b>7.</b> (E                            |
|      | m                                       | m                 | 354              | .7840.17E              |                       | 40.2                     | 400                 | CA 2. (F. CC                            |
|      | •                                       | •                 | 355              | 40.14E                 |                       | 45.C                     | <b>3</b> 00         | 1. CE                                   |
|      | •                                       | ·                 | 356              | 1+00.                  |                       | 41.E                     | <b>4</b> 00         | 1. (£-                                  |
|      |                                         | ~                 | CAF- 357         | -80 40 • 6CE-          |                       | 15.5                     | <b>7</b> 9 <b>5</b> | 1. CE                                   |
|      | 450                                     | 2546-A            | ~                | .08€                   | 01.0                  | <b>t</b> e.1             | 7                   |                                         |
|      | 410                                     | 60                | 2                | 1.16 #0.03E 02         | 4.275                 | 64.3                     | Ç                   | 6. 5E-01                                |
|      | 440                                     | 8044              | COS- 401         | 1.1940.025 04          |                       | 46.7                     | <u>۲</u>            |                                         |
|      | 950                                     |                   | 405              |                        |                       | 4.03                     | 36                  |                                         |
|      | 8,0                                     |                   | 1008             | .68 10.27 €            |                       | 63.4                     | ĭ                   |                                         |
| -    | 0 58- N                                 | 2551-1            | CA0- 358         | € 0                    |                       | <b>30°C</b>              | )<br>(              | 9. E OG                                 |
|      | ~                                       |                   | 359              | 0                      |                       | 80.2                     | Š                   |                                         |
|      | •                                       | m                 | 360              | 0                      |                       | _                        | )<br>)<br>(         | 6. 16 60                                |
|      | 4                                       | •                 | 361              | .46 t0 . 05 E          |                       | . 4 . 7                  | 2CC                 | 5. ZE CC                                |
|      | ¥                                       | •                 | 362              | .92 to . 29 E          |                       | £7.£                     | <b>3</b> C(         | #                                       |
|      | •                                       | ~                 | n                | .8440.208              |                       | 74.6                     | <b>4</b> CC         |                                         |
|      | 0 7 0                                   | 2452              | -1               | .94 to.12E             |                       | 76.7                     | ĭ.                  | 3. (E-01                                |
|      | 070                                     | 8644              |                  | 7.4410.17E 03          |                       |                          | 76                  | 1. 16                                   |
|      | 062                                     |                   | 404              | .83 tO.22E 0           |                       |                          | )<br>2<br>7         | E                                       |
|      | 062-1                                   | 2540-1            | CC0- 86          | .07 to.03E 0           |                       | 73.0                     | )<br>)<br>(         |                                         |
|      | ~                                       | ~                 | 10               | .18 t0.05E 0           |                       |                          |                     | ָ<br>פּ                                 |
|      | <b>.</b>                                | m                 | 8                | 10.03E                 |                       | 74.2                     | <u>ک</u>            | 1. EF CC                                |
|      | ∢                                       |                   | 60               | 6.97 to. 23E 01        |                       | -                        | 107                 | 2.4£ 00                                 |

| TABI | TABLE E.1 (CONTINUED) | TINUED)        | -        |               |         | 1       | 1           | 4<br>4<br>9<br>9<br>9<br>9 |
|------|-----------------------|----------------|----------|---------------|---------|---------|-------------|----------------------------|
| ARC  | ARC LOCATION          | 7              | 7 L h    | PU-239,240    | AUI NAU | YIELD   | COUNT       | ANAL JHON                  |
|      |                       | COLLECTION NO. |          | (00k)         | GRAMS)  | MORK)   | 3411        |                            |
| œ    | 062-5                 | 2540-5         |          | .1340.148 0   |         | 72.c    | 300         |                            |
| :    | 066                   | 3578           | CTA- 235 | 3 ‡0          |         | 74.3    |             | 4.36-01                    |
|      | 0 € 6 - A             | 8044           |          | .87 t0.20E 0  |         | C1      | 36          |                            |
|      | 60                    |                | 739      | .36 to. 19E 0 |         | *       |             |                            |
|      | 068                   | ᠵ              | <u>_</u> | -07 tO-15E 0  | 0.125   | 6 6 . S | <b>S</b>    | £-                         |
|      | 068                   | 8044           | COS- 406 | .2940.10E D   |         | 50.4    | 2           |                            |
|      | 070-1                 | S.             | A0-      | .4740.06E 0   | 0.0510  | 67.1    | 40          | . 1E                       |
|      | ~                     | ~              | 371      | .4440.16E 0   | 0.0710  | 67.5    | 70          |                            |
|      | m                     | 6              | 372      | .97 #0.08 E O | 0.0850  | 71.7    | <u>چ</u>    |                            |
|      | 4                     | •              | 373      | E 0           | 0.421   | 67.3    | 90          |                            |
|      | •                     | 9              | 374      | .84 tO. 26E 0 | 0.720   | 66.1    | 2CC         |                            |
|      | _                     | _              | AF-      | E 0           | 1.12    | 46.6    | γ           |                            |
|      | 072                   | 2566           | ŧ        | -1340.13E 0   |         | 71.2    | 3C          |                            |
|      | 074-1                 | 2560-1         | -03      | .88 #0.06E 0  |         | 17.4    | 30C         |                            |
|      | ~                     |                | 101      | .06 #0.06E 0  |         | 75.3    | )<br>]<br>[ |                            |
|      | <b>(**)</b>           | m              | 108      | 0             |         | 11.1    | 100         | 3.4E CO                    |
|      | ∢                     | ∢              | 109      | .22 tO.06E D  |         | 13.7    | )<br>()     | 1.75 00                    |
|      | €0                    |                | -        | .57 to.17E 0  |         | 61.6    | <b>3</b> 00 |                            |
|      | 076                   | 2952           | CTA- 251 | .07 to. 12E 0 |         | 74.4    | <b>3</b> C  | 3.76-01                    |
|      | 080                   | 2569           | m        | .6340.02E 0   |         | 14.5    | <b>3</b> C  | • tE-                      |
|      | 0.60-1                | 2561-1         | -        | .02E 0        |         | 11.8    | <b>3</b> 00 |                            |
|      | ~                     | -              | 112      | .3440.07E 0   |         | 91.4    | 20          | . 1E                       |
|      | m                     | m              | 113      | .1340.02E 0   |         | 74.4    | 300         | 1. !E 00                   |
|      | 4                     |                | 114      | .60 #0.04E 0  |         |         | 3001        | • CE                       |
|      | <b>e</b> n            | 'n             | CCF- 115 | .85 to.06 E 0 |         | 64.1    | 1000        | • 1E                       |
|      | 230                   | 2534-A         | CAD-2166 | .34 tO.26E D  | 4.67    |         | <b>3</b> CC | . CE-                      |
|      | 230                   | 60             | ~        | 40.37E 0      | 0.181   | 31.0    | 3           | 8. (è-02                   |
|      | 066-1                 | 2564-1         | CCO- 116 | .6440.02E 0   |         | 74.5    | 300         | • 3E                       |
|      | ~                     |                | -        | .5740.04E 0   |         | 12.4    | 201         | ٠<br>بي                    |

166 CONFIDENTIAL

| ລ        |
|----------|
| 5        |
| NITA     |
| <u> </u> |
| 7        |
| LE E.1   |
| 9        |
| 2        |

| ARC      | LOCATION   | TLW<br>COLLECTION<br>NO. | TLW<br>ANALYSIS<br>NO. | PU-239,240<br>ACTIVITY<br>(DPP) | C A AN ICH<br>C P I C R O<br>G P A P S J | Y LEL C<br>(R=RE<br>WORK) | COUNT<br>TIME       | ANAL MON    |
|----------|------------|--------------------------|------------------------|---------------------------------|------------------------------------------|---------------------------|---------------------|-------------|
| <b>a</b> | F - 9 4 0  | £-745 C                  | CCD- 118               | 4                               |                                          | 2,0                       | 305                 |             |
| :        | •          | 4                        | 611                    | 36 +0 - 10 E                    |                                          | 10.3                      | 300                 | 1 - EE CC   |
|          | . au       | · <b>K</b> N             |                        | .32 to.09                       |                                          | 82.6                      | 306                 |             |
|          | 0 68-1     | 2937-1                   | CAD- 340               | .87 tO. 14E                     |                                          | 62.2                      | <b>3</b> 0 <b>C</b> |             |
|          | 7          | 7                        | 341                    | .33 40.06E                      |                                          | 62.4                      | <b>3</b> 0 <b>6</b> |             |
|          | m          | 6                        | 345                    | .53 #0.63E                      |                                          | 40.4                      | <b>3</b> CC         |             |
|          | •          | ◀                        | 343                    | .67 #0.21E                      |                                          | 70.3                      | )<br>)<br>(         |             |
|          | •          | •                        | 344                    | .10 to.32E                      |                                          | 15.2                      | Ą                   |             |
|          | ~          | 7                        |                        | .85 to.37E                      |                                          | 12.2                      | 400                 |             |
|          | 050        | 2545                     | CTA- 250               |                                 | 0.222                                    | 45.6                      | ž                   |             |
|          | 250        | 2567                     |                        |                                 |                                          | 46.8                      | 2                   | •           |
|          | 1-250      | 2553-1                   |                        |                                 |                                          | 67.5                      | )<br>)<br>          |             |
|          | ~          | 7                        | 16                     |                                 |                                          | 73.4                      | 100                 | 2. fe co    |
|          | m          | m                        | 96                     |                                 |                                          | 1.08                      | 300                 | 3. (F CC    |
|          | *          | 4                        | 66                     |                                 |                                          | 83.5                      | <b>306</b>          | 1. 3€ CC    |
|          | ×۸         | <b>5</b> 0               | •                      |                                 |                                          | 105.                      | <b>3</b> 26         | 1.76 00     |
|          | 058-1      | 2557-1                   | 101 -023               |                                 |                                          | 77.6                      | 1000                | 1.2E CO     |
|          | ~          | ~                        |                        |                                 | 1.11                                     | ~                         | <b>308</b>          | 1. (E CC    |
|          | m          | m                        | 103                    |                                 |                                          | 0                         | <b>30</b> 0         | 1.€ 60      |
|          | •          | 4                        | 104                    |                                 |                                          | •                         | <b>30</b> 2         | 1.26 00     |
|          | ŧ۸         | *                        | CCF- 105               |                                 |                                          | 47.8                      | <b>30</b> 0         | 1. 3E 00    |
|          | 1-431      | 2550-1                   |                        |                                 |                                          | 41                        | 306                 | 1. 16 CC    |
|          | ~          | 7                        |                        |                                 |                                          | 62.5                      | 300                 | 1. TE 90    |
|          | m          | m                        | 93                     |                                 |                                          | 83.0                      | )<br>()             | 2. EE 00    |
|          | 4          | *                        | 96                     |                                 |                                          | 80.6                      | <b>302</b>          | 3. CE       |
|          | <b>s</b> n | •                        |                        |                                 |                                          | 83.1                      | )<br>)<br>(         | CA 1. EE 01 |
|          | 169-1      | 2568-1                   | CCD- 121               | 1.2940.136 00                   | 2.06                                     | 42.4                      | 200                 | 1. CE       |
|          | ~          | ~                        | 122                    |                                 |                                          | 56.5                      | )<br>)<br>(         | ш           |
|          | <b>m</b>   | ED.                      | 123                    | 1.70+0.08E 01                   |                                          | 59.6                      | )) <b>?</b>         | 1.5€ 00     |

#### CONFIDENTIAL

| 1 | TABL | TABLE E.1 (CO | (CONTINUED) |                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |                     |             |
|---|------|---------------|-------------|------------------|---------------------------------------|-----------------------------------------|-----------------|---------------------|-------------|
|   | ARC  | LOCATION      | · •         | TLN<br>ANALYSI S | FU-239,240<br>AC1 [VITY               | UR AN IUM                               | Y SELD<br>(R*RE | COUNT<br>114E       | ANAL MICH   |
| ! |      | 1             | ·ON         |                  | (440)                                 |                                         | 4  <br>4  <br>5 |                     |             |
|   | α    | 106-4         | 2568-4      |                  | .8340.18E                             |                                         | •               | 300                 | . CE        |
|   | ì    | <b>.</b>      | S           | CCF- 125         | 92                                    |                                         | 6.9°E           | <b>3</b> CC         | 1. £E 00    |
|   | 8 AL | L 5, P 17     | 2507-A      |                  | .00 40.038                            | •                                       | •               | Ų<br><b>V</b>       | ÷.          |
|   | 1    | L 5, P 17     | 60          |                  | .01 #0.02E                            | 1.07                                    | •               | 7,                  | ij.         |
|   |      | 17.99         | 2443-A      |                  | .95 40.07E                            | 7                                       | •               | 300                 | <u>س</u>    |
|   |      | 18,921        | -15         | CC0-2157         | .33 tO.02E                            | ~                                       | •               | 300                 | H.          |
|   |      | 1.8, P.21     |             |                  | .08 #0.15E                            | Ç.                                      | 37.68           | 7                   | ¥.          |
| * | 884  | L 6, P 13     | 2482-A      | 2159             | .13 #0.03E                            | 1.44                                    | •               | )<br>)<br>(         | 'n          |
|   | 1    |               |             | 2205             | .46 #0.06 E                           | 0.166                                   | ŗ               | £C                  | ÷.          |
|   | 0.4  | CHR-14        | 9106        | C VS-2076        | .9940.35E                             |                                         | •               | <b>3</b> CC         |             |
|   |      | 91            |             |                  | .47 #0.40E                            |                                         | 90.4            | <b>3</b> C C        |             |
|   |      | <b>Z</b> A    |             | 2018             | .50 t0.34E                            |                                         | •               | 1000                |             |
|   |      | 28            |             | 2019             | .35 to.37E                            |                                         | 15.5            | <b>30</b> 0         |             |
|   |      | 4             |             | 2080             | .57 t0. 24E                           |                                         | •               | )<br>20.            |             |
|   |      | <b>9</b>      |             | 2081             | .1640.368                             |                                         |                 | <b>3</b> 0 <b>7</b> |             |
|   |      | 14            | 9720        | 2082             | .9340.05E                             |                                         | •               | <b>3</b> CC         |             |
|   |      | 91            |             | 2083             | .58 ±0.13E                            |                                         | 14.7            | 200                 |             |
|   |      | 2A            |             | 2084             | .78 #0.08 E                           |                                         |                 | ၂<br>၂              |             |
|   |      | <b>82</b>     |             | 2085             | .0740.226                             |                                         | •               | 100                 |             |
|   |      | 44            |             | 2086             | .69 #0.09E                            |                                         | ~               | )<br>]<br>[         |             |
|   |      | 48            |             | 2087             | .14 to . 09 E                         |                                         |                 | 200                 |             |
|   |      | 11A           |             | 2088             | .78 to. 11 E                          |                                         | ٠               | <b>3</b> 00         |             |
|   |      | 118           | - · `.      | <b>508</b> 3     | .1140.06E                             |                                         | 46.6            | )<br>)<br>(         |             |
|   |      | 12A           |             | 2090             | .45 to . 13E                          |                                         | 76.5            | <b>5</b> 00         |             |
|   |      | 120           |             | 1602 .           | .91 to.31E                            |                                         | 36.6            | )<br>)<br>(         |             |
|   |      | S 1K - 10     | 10012       | CDS-1078         | .6341.158                             |                                         | 19.3            | 30 <b>2</b>         | 2. (E-      |
|   |      | 104           | •           | 1079             | .2012.10E-                            |                                         | 4.06            | )<br>)<br>(         |             |
|   |      | 11            |             | 1080             | .6341.09E                             |                                         | m . m           | <u>ر</u>            | 1 - 1E - C2 |
|   |      | 1 1 A         |             | 1001             | 7.60 t6. 10 E-0 J                     |                                         | 14.4            | 36                  |             |

\*Sample inadvertently combined with TB-F2 2305B in chemistry.

| TABI | TABLE E.1 (CONTINUED) | NTINUED)  |                 |                  |           | 1               | 1 1 1          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | i |
|------|-----------------------|-----------|-----------------|------------------|-----------|-----------------|----------------|-----------------------------------------|---|
| ARC  | LOCATION              | 12 K      | 7Ch<br>ANALYSIS | FU-239,240       | UR AN IUM | Y JELC<br>(R*RE | COUNT<br>TIME  | ANAL JMON                               |   |
|      |                       | NO.       |                 | (DFP)            | GRAMS)    | WORK )          |                | 0<br>4<br>9<br>1<br>0                   | i |
|      |                       |           |                 | 1 1040 405 00    |           | C. T.           | 26             | 5. CF - C3                              |   |
| Ý    | 51K-12                | 7111      | 7807-663        |                  |           | 4.4             | ָבָיב <u>ָ</u> | CA 1. (F-02                             |   |
|      | 124                   |           | 1084            | 1.28 to.04E OI   |           | 63.1            | 200            | 2. (E-                                  |   |
|      | VE 1                  |           | 1085            |                  |           | *               | 100            | CA 1. (E-C2                             |   |
|      | 7 -                   |           | 1086            | 1.70 #0.30 E 00  |           | 83.4            | 100            | 1. CE-                                  |   |
|      | 144                   |           | 1097            | 8.70 +1.80 E-01  |           | G               | )<br>)<br>(    | CA 1. (E-02                             |   |
|      | 15                    |           | 1130            | 4.86 to.30E 00   |           | 5.59            | <b>3</b> CC    | <del>-</del> 3) •                       |   |
|      | 16                    | 1 CC13    | 1131            | 9.2042.90E-01    |           | 70.5            | ۲              | 1. (E CO                                |   |
|      | 164                   | 1         | 1132            | 2.1540.198 00    |           | 13.7            | <b>3</b> 00    | 4. (E-                                  |   |
|      | ~                     |           | 1133            | 3.6910.14E 01    |           | ċ               | 100            | CA 3.4E 01                              |   |
|      | 174                   |           | 1134            | 6.3140.42E 00    |           | 47.7            | <b>3</b> 00    | 36                                      |   |
|      | 18                    |           | 1135            | 3.2540.23E 00    |           | .;              | )<br>)<br>(    |                                         |   |
|      | 1.84                  |           | 1136            | 1.67 #C. 06E 01  |           |                 | 300            | 4                                       |   |
|      | 161                   |           | 1137            | 2.65 t0.10 01    |           | ~               | )) <b>?</b>    | 1                                       |   |
|      | 194                   |           | 1138            | 6.0940.22E 01    |           | S               | 100            | بير                                     |   |
|      | 20                    | 1 ( C C S | 1017            | 1.7240.06€ 02    |           | 71.3            | <b>3</b> 00    | <u></u>                                 |   |
|      | 36                    | 10001     | 1076            | 1.44 10.05E 02   |           | •               | <b>&gt;</b> 2  | 7                                       |   |
|      | 71                    | 10010     | 1056            | 7.96 t0.25E 03   |           | Q.              | 36             | Ē                                       |   |
|      | 12                    |           | 1057            | 6.49 to. 20 E 03 |           | œ               | <b>&gt;</b>    | Ŧ.                                      |   |
|      | 73                    | •         | . 1058          | 6.9440.22E 03    |           | 73.1            | ,              | Ä                                       |   |
|      | 74                    | • .       | 1059            | 5.29 to. 17£ 03  |           | 78.6            | 36             | 느                                       |   |
|      | 75                    | •         | 1060            | 6.60 #0.23E 03   | ,         | 72.4            | 3 C            | 1                                       |   |
|      | 25                    |           | 1001            | 3.07 to. 11E 03  | •         | 74.7            | 36             | 딒                                       |   |
|      | 11                    |           | 1062            | 3.8140.136 03    | •         | 16.4            | <b>~</b>       | w                                       |   |
|      | 7.0                   |           | 1063            | 3.6740.138 03    |           | 14.1            | 36             | ۳                                       |   |
|      | 6                     |           | 1064            | 4.1840.14E 03    |           | 75.5            | ž              | <u>.</u>                                |   |
|      | 00                    |           | 1065            | 4.1140.146 03    |           | 8c.3            | <b>&gt;</b>    | 3. (E CO                                |   |
|      | 6                     |           | 1066            | 2.2510.098 02    |           | 71.5            | ~              | -3. Æ-                                  |   |
|      | 97                    |           | 1067            | 2.9540.106 02    |           | 74.3            | <b>&gt;</b>    |                                         |   |

| TABI  | TABLE E.1 (C  | (CONTINUED)                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *************************************** |           | 111111111111111111111111111111111111111 |                     |                                              |
|-------|---------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|---------------------|----------------------------------------------|
| ARC   | LOCATION      | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | TEN<br>ANDIYSIS                         | FU-239,240<br>ACTIVITY                  | UR BN IUM | Y JELC<br>IR BE                         | COUNT<br>TIME       | ANAL /HON                                    |
|       |               |                                          | NO.                                     | 1940)                                   | GRAMS 1   | WORK )                                  | 1                   | ***                                          |
| )<br> |               |                                          |                                         | •                                       |           |                                         | 7.0                 | 1,7 4 6                                      |
| ٧0    | STK-63        | 10101                                    | CD 2-1068                               | .98 to . 15t                            |           |                                         | . ·                 | ֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡ |
|       | <b>5</b> 2    |                                          | 1069                                    | .1240.25E                               |           | 9                                       | 7                   | ָ<br>נ<br>נ                                  |
|       | 85            |                                          | 1070                                    | .33 t0.04 E                             |           | 65.5                                    | <b>3</b> C          | 4                                            |
|       | 98            |                                          | 101                                     | .3240.03€                               |           | 71.7                                    | 20                  | æ                                            |
|       | . 4           |                                          | 1072                                    | .47 40.04E                              |           | 16.4                                    | 26                  |                                              |
|       | 250           | 1,000                                    | 1073                                    | 1.03 40.03 6 04                         |           | 73.4                                    | 20                  | 1. (f co                                     |
|       | 251           | •                                        | 1074                                    | .41 40.16E                              |           | 10.6                                    | 76                  |                                              |
|       | 252           |                                          | 1075                                    | .20 to . 16 E                           |           | 19.1                                    | 20                  |                                              |
| PCMR  | P CMR 2- 1- E | NCNE                                     | C SF - 1 890                            |                                         | 7.24      | 13.1                                    | ));                 | 3. (E-C3                                     |
|       | ۱ سر<br>•     | <b>!</b>                                 | _                                       |                                         | 8.31      | 91.5                                    | 30 <b>2</b>         | 1. CE-03                                     |
|       | <b>,</b> ~    |                                          | 1892                                    | 5.25 to. 12E 02                         |           | 43.6                                    | 100                 | 2. CE-02                                     |
|       | · a.          |                                          | 1893                                    |                                         | 31.7      | 4.1.4                                   | <b>3</b> CC         | 1. 16-01                                     |
|       |               |                                          | 1894                                    |                                         | 0.11      | 4C-1                                    | 3CC                 | 3. (E-C2                                     |
|       | 10            |                                          | 1 6 9 5                                 | 10.12E                                  | 25.6      | 21.1                                    | 30 <b>c</b>         | 4. (E-C2                                     |
|       |               |                                          | 1896                                    | .6340.09E                               | 6.95      | 4.5.4                                   | 9                   | 4. (E-02                                     |
|       | 2-5           |                                          | 1897                                    |                                         | 31.6      | 56                                      | 3 C C               | 2. (E-03                                     |
|       | • <b>•</b> •• |                                          | 1898                                    | .0840.036                               | 19.3      | 2.62                                    | 36                  | 1. 2E CC                                     |
|       | . ~           |                                          | 1899                                    |                                         | 31.5      | 2005                                    | 20                  | 1.36 00                                      |
|       | ·             |                                          | 1 900                                   |                                         | 2.50      | 76.4                                    | <b>3</b> CC         | 3. 36 - 01                                   |
|       | v             |                                          | 1061                                    |                                         | 2.34      | 84.6                                    | 76                  | 8.4E-01                                      |
|       | 10            |                                          | 1902                                    | .8240.43E                               | 7.41      | 66.1                                    | 308                 | 4. (E-C2                                     |
|       | 11            |                                          | 1903                                    | .58 40.08 E                             | 3.45      | 84.3                                    | <b>3</b> 0 <b>c</b> | 1. te - c1                                   |
|       | 4             |                                          | 1904                                    | .17 tO.06E                              | 15.9      | 45.5                                    | 30 <b>2</b>         | 3. 1E 00                                     |
|       |               |                                          | 1905                                    | 6.4010.298 01                           | 13.0      | •                                       | ) ) <b>?</b>        | Ē,                                           |
|       | _             |                                          | 1 906                                   | .43 t0.21E                              | 28.8      | £0.3                                    | )<br>)<br>)         | 1.56-61                                      |
|       | · <b>4</b> 2  |                                          | 1907                                    | .02 40.116                              | 4.78      | 21.7                                    | <b>308</b>          | <u>.</u>                                     |
|       | v             |                                          | 1908                                    | 358                                     | 47.2      | 7.55                                    | <b>308</b>          | 2. CE-02                                     |
|       | 21            |                                          | 1909                                    | 1                                       | 1.41      | 27.5                                    | <b>3</b> 66         | 10 - 36 - 61                                 |
|       | 7             |                                          | 1910                                    | 8.3410.438 01                           | 4.87      | 53.4                                    | ))?                 | 5. te-01                                     |

170

| NONE   CSF-1911   S-54 10.41E   O   2.08   31.7   200   1.40   S-64 10.24E   O   2.08   31.7   200   S-64   S-64 10.24E   O   2.08   31.7   200   S-64   S   |                                                                                             | 16 F | TLW<br>ANALYS! | -239,24<br>CTIVIIY | 8 44 TU  | 1EL<br>R=9 | COUNT<br>1 146 | ANAL JANA        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|----------------|--------------------|----------|------------|----------------|------------------|
| NONE   CSF-1911   S.54 10.41E 00   2.08   71.7   200   1.46   1.91   1.45 10.31E 00   2.08   71.7   200   1.46   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90   1.90     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | . !  | *ON            | 100                | NAME I   | 81         |                |                  |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                           |      | 5              | 0 317 0173         | •        | 7          |                | . <b>(</b> F.    |
| 1915   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918   1918      | F CMR 2- 6- 6                                                                               | 202  | 141-70         | 0 314.01424        | 9        | -          | ·              |                  |
| 1916   9.28 00.555 00   1.96   34.6   500   1.16   1.96   34.6   500   1.96   1.96   34.6   500   1.96   34.6   500   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   34.6   3   | - •                                                                                         |      | 7 6            | 96 40.24F          | 9        |            | ·              | JE.              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>,</b>                                                                                    |      | ; 7            | 2840.55E 0         | 6        | ٠,         | U              | <b>.</b> ₹       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 5                                                                                         |      | : 6            | .7240.53E 0        |          | ij         | U              | . 3£ -           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                          |      | 16             | .0140.23E 0        | 8        | -          | u              | . Œ-             |
| 1918   2.5740.06E 02   1.62   16.5   200   1.1E-0   1919   1.4740.06E 01   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   11.40   1   | 1 11                                                                                        |      | 7              | .9143.596-0        | 7        | ċ          | u              | G                |
| 1919   3.7940.13E 01   16.9   75.5   200   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60     | . <b>-</b>                                                                                  |      | 16             | .57 10.06E 0       | •        | ٤.         | u              | - 16-            |
| 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , p~                                                                                        |      | 6              | .79 to.13E 0       | Ġ        | S          | u              | . IE-            |
| 1921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |      | 92             | .4740.06E 0        | 1.4      | w          | u              | <del>.</del> 6-  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                         |      | 92             | .64 t0.46E 0       | .02      | 72         | u              | -33              |
| F-# 1923 4.6740.22E 01 53.5 42.5 2CC 4.CE-C 19.9 14.2 2CC 7.CE-C 19.9 14.2 2.5240.40E 00 11.8 67.2 2.CC 7.CE-C 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 14.0 19.3 14.0 19.2 19.3 14.0 19.2 19.3 14.0 19.2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                          |      | 92             | .3040.36E 0        | ٠,       | _:         | C              | . (F-            |
| F-g   1924   5.5240.40E   00   11.8   87.2   200   7.00E   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |      | 92             | .67 to.22E 0       | ÷        |            | u              | ÷.               |
| 1925 8.3040.276 01 19.9 14.6 9CC 3.8F-C 1925 1.3440.476 01 15.0 75.6 2CC 3.8F-C 1927 1.2440.46 02 15.0 75.6 2CC 3.8F-C 10 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -L                                                                                          |      | 92             | .52 to. 40E 0      | -        | ۲.         | u              | . (F-            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) <b>-4</b> 1                                                                               |      | 92             | .3040.27E 0        | 6        | ÷          | u              | . F-             |
| 1927   2.0240.08E 01   11.1   15.5 3CC   1.2E-C   1928   3.1340.10E 02   40.5   40.E   20.C   1.2E-C   1928   3.1340.10E 02   40.5   40.E   20.C   1.2E-C   1931   3.1340.20E 01   55.2   41.2   20.C   5.E   20.C   2.E   20.C    | , (~                                                                                        |      | 92             | .34 tO.04E 0       | \$       | ۶.         | C              | . <del>.</del> . |
| 9.240.60E 01 36.4 31.9 20 1.6 E 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · 44                                                                                        |      | 92             | .02 40.08 E O      |          | ٠,         | J              | . ž£ -           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , U-                                                                                        |      | 8              | .13 40.10£ 0       | ó        | ؽ          | u              | #                |
| Fig. 1930 3.1240.20E 01 55.2 41.2 5CC 4.(E-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                          |      | 92             | .26 40.60E 0       | 9        | <u>:</u>   | u              | . tf.            |
| 9-5 1931 3.7940.73E-01 0.946 86.E 5CC 2.(E-C 1932 8.7240.25E 01 3.35 73.4 2CC 1.7E 0 1933 8.5440.32E 01 2.53 45.2 2CC 1.7E 0 1934 2.2840.12E 01 8.41 22.7 2CC 1.7E 0 1934 2.2840.12E 01 8.41 22.7 2CC 1.7E 0 1935 1.3140.04E 02 2.73 2C.4 5CC 1.4E 0 1935 11.7540.04E 02 2.73 2C.4 5CC 1.4E 0 1935 11.7540.04E 02 42.3 49.C 2CC 1.4E 0 1939 82.4 2CC 1.4E 0 1941 8.3040.17E 02 1.39 82.4 2CC 1.4E 0 1941 8.3040.17E 02 1.39 82.5 2CC 1.4E 0 1942 4.5540.10E 02 28.4 64.1 2CC 1.4E 0 1943 1.4770.04E 02 3.00 52.6 2CC 1.4E 0 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1944 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1945 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1945 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1945 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1.5140.04E 02 29.0 92.5 2CC 2CE 1.4E 0 1945 1.5140.04E 02 1.514 |                                                                                             |      | 63             | .1240.20E 0        | Š        | ij         | O              | <u>.</u>         |
| 1932   8.7240.25E 01   3.35   73.4   200   1.7E 0   1.934   2.28   40.12E 01   2.53   45.2   200   1.95   1.95   1.934   2.28   40.12E 01   8.41   2.3.7   500   1.95   3.26-0   3.26-0   1.935   1.3140.04E 02   2.73   20.4   500   1.4E 0   3.26-0   1.31   8.24   200   3.26-0   3.26-0   1.31   8.24   200   3.26-0   3.26-0   1.31   8.24   200   3.26-0   1.60   1.60   1.60   1.60   1.60   1.31   8.24   200   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60   1.60    |                                                                                             |      | 93             | .7940.736-0        | .94      | ċ          | u              | <del>.</del> .   |
| 1933   8.5440.32E 01   2.53   45.2   200   1.950     1934   2.2840.12E 01   8.41   2.71   500   3.45-0     1935   1.3140.04E 02   2.73   20.4   500   1.4E 0     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                           |      | 93             | .72 40.25E         | ~        | ä          | u              | بب               |
| 1934   2.28 #0.12E 01   8.41   22.7   500   3.45-00     1935   1.31 #0.04E 02   2.73   20.4   500   1.4E 0     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ~                                                                                         |      | 93             | .54 to.32E 0       | ٧.       | Š          | O              | <u>ښ</u>         |
| 10 1935 1.3140.04E 02 2.73 2C.4 5CC 1.4E C 10.7 1936 9.9940.33E 01 10.7 29.5 2CC 3.2E-C 11.31 1938 1.7540.04E 02 1.31 82.4 2CC 3.2E-C 12.5 12.5 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                           |      | 93             | .28 #0.12E D       | ۲.       | •          | u              | £-               |
| 10 1936 9.9940.33E 01 10.7 49.5 2C 3.3E-C 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ç                                                                                           |      | 93             | .3140.04E 0        | ~        | Ü          | •              | ų.               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                          |      | 93             | .9940.33E 0        | ö        | ው          | u              | ٠ <u>٠</u>       |
| 11-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                          |      | 93             | .44 tO.16E 0       | ä        | ¥          | C              | ÷                |
| 12-5 HONE CSF-1940 2.04+0.05E 02 42.3 49.C 2CC 1.1E C 12-E HONE CSF-1940 2.04+0.06E 03 9.26 5C.E 2CC 1.1E C 1941 8.30+0.17E 02 1.39 88.5 2CC 1.1E C 1942 4.65+0.10E 02 28.4 84.1 2CC 1.1E C 1943 1.47+0.04E 02 3.00 52.E 2CC 7.1E 0 1944 1.51+0.04E 02 3.00 52.E 2CC 7.1E 0 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1.1E C 1945 3.34+0.07E 02 29.0 92.5 2CC 2.1E 0 1945 3.24+0.07E 02 29.0 92.5 2CC 2.1E 0 1945 3.24+0.07E 02 29.0 92.5 2CC 2.1E 0 1945 3.24+0.07E 02 29.0 92.0 92.0 92.0 92.0 92.0 92.0 9                                                                                                                                                                                                                                                                                                                           |                                                                                             |      | 93             | .75 to.04E 0       | ٠.       | ċ          | C              |                  |
| 12-E   MQNE   CSF-1940   2.04+0.06E 03   9.26   50.E   200   1.89   1.89   1.89   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.80   1.   | 12-5                                                                                        |      | 93             | .93 tO.25E 0       | <b>?</b> | ÷          | ·              | <u>ب</u>         |
| 1941 8.30 +0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                           | NONE | \$61-55        | .04 t0.06E 0       | ?        | U          | u              | •                |
| 1942 4.6540.10E 02 28.4 84.1 2CC 1.4E 0 1943 1.4740.04E 02 3.00 52.6 2CC 7.4E 0 1944 1.5140.04E 02 6.74 85.C 2CC 1.7E C 1945 3.3440.07E 02 29.0 92.5 2CC 2.4E 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p.                                                                                          |      | 36             | .30 to. 17 E G     |          | E)         | •              | ָ<br>ייי         |
| 1943 1.47/0.04E 02 3.00 52.E 2CC 7.EE U E944 1.51/0.04E 02 6.74 85.C 2CC 1.2E C 1945 3.34/0.07E 02 29.O 92.5 2CC 2.EE 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | æ                                                                                           |      | 4              | .65 to. 10E 0      | 4.8      | ÷          | u              | . EE 0           |
| 1944 1.5140.04E 02 6.74 85.C 2CC 1.7E C 1945 3.3440.07E 02 29.0 92.5 2CC 2.EE 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O*                                                                                          |      | 46             | .47 10.04E 0       | 0        | ij         | u              |                  |
| 1945 3.34+0.07E 02 29.0 92.5 2CC 2.KE 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                           |      | 3              | .51 to.04E 0       | 6.7      | •          | u              | ٠<br>ن           |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |      | 46             | .34 tO.07 E O      | ٠.       | ÷          | ပ              | . ff 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 47 40 10 10 10 10 10 10 10 10 10 10 10 10 10                                             | 900  |                |                    |          |            |                |                  |

171

| E LOCATION TLN TLN NO.  COLLECTION ANALYSIS  NO. NO. NO.  LOCATION ANALYSIS  LOCATION ANA | 1 1             |           |                  |                     | 4 6:4 1 10/11:    |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------------|---------------------|-------------------|---|
| NO.  -16-1 3367-1 C 2 3 3 3 4 4 6 6 8123 C 6 6 8123 C 6 7 8123 C 6 7 8123 C 6 7 8123 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>3</b> ∢      | UB AN IUM | 7 IEC C<br>(R=9E | 1000<br>1746        | Prior / First     |   |
| -16-1 3367-1<br>3 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (064)           | GRAMS )   | #ORK ]           | 1                   |                   | • |
| -C6 5835 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3540.966-01   |           | 12.6             | 200                 | 1.46-01           |   |
| -C6 5835 5<br>10 30 888 6<br>4 6 8123 6<br>4 7 8123 7<br>6 3 8123 7<br>6 3 8123 7<br>6 3 8123 7<br>6 3 8123 7<br>7 8123 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |           | 78.C             | 3 C C               | 8. (E - CI        |   |
| - Ce 5835 5 69 69 69 69 69 69 69 69 69 69 69 69 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |           | 84.2             | )) <b>?</b>         | 1.4E CO           |   |
| -C6 5835 5<br>C9 10<br>10 3C88<br>0 8123<br>4-2 3247-2<br>4-2 3247-2<br>6 8123<br>6 3C97<br>6 3C97<br>6 3C97<br>6 3C97<br>6 3C97<br>6 3C97<br>7 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |           | 36.4             | 305                 |                   |   |
| 6 9123<br>6 9123<br>6 9123<br>6 9123<br>6 9123<br>6 9123<br>6 9123<br>6 9123<br>6 9123<br>7 8123<br>8 8 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9140.086      |           | 63.4             | <b>3</b> CC         | 10 35 .1          |   |
| 69 3C88<br>6 8123<br>4 8C89<br>8 8123<br>4 6 8123<br>6 3247-2<br>3 3247-2<br>3 3247-2<br>6 8123<br>6 5 6<br>7 8123<br>7 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |           | 78.6             | <b>3</b> C          |                   |   |
| 1 C 3 C 8 8 8 1 2 3 2 4 7 - 2 3 2 4 7 - 2 3 2 4 7 - 2 3 2 4 7 - 2 3 2 4 7 - 2 3 2 4 7 - 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.90 to .08E 07 |           | 90               | <b>5</b> 6          |                   |   |
| 4 9 123<br>4 9 123<br>4 9 123<br>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |           | 30°C             | 36                  |                   |   |
| 6 8123<br>4-2 3247-2<br>4-2 3247-2<br>4-2 3247-2<br>6 8123<br>6 8123<br>6 8123<br>7 8123<br>7 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0140.06E      | 0.0592    | 34°C             | <b>3</b> 00         | 2. £ CC           |   |
| 6 8123<br>6 8123<br>6 8123<br>6 8123<br>6 8123<br>6 8123<br>6 8123<br>7 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |           | 70.C             | 36                  |                   |   |
| 6 8123<br>4-2 3247-2<br>3 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.30 tG. 10E    |           | 73.4             | 20                  | 7.18 60           |   |
| 6 8123<br>6 3247-2<br>3 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9740.038 02   |           | 91.4             | <b>3</b> 00         | 4. CE - 04        |   |
| 4-2<br>3247-2<br>4<br>4<br>6<br>7<br>8123<br>6<br>6<br>8123<br>7<br>8123<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6910.10       |           | 3.18             | );                  | 8. EE CC          |   |
| 3 3 3 4 4 4 4 6 6 7 8 12 3 7 9 1 8 1 2 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |           | 36.6             | <b>U</b>            | 7.56-01           |   |
| 6 8123 7 6-1 2615-1 2615-1 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.27 +0.20 6    |           | 45.4             | <b>3</b> 0 <b>6</b> | 4. 56-01          |   |
| 6 8123 7<br>6 3697<br>6-1 2615-1<br>2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |           | 26.5             | ¥                   | Ę.                |   |
| 6 8123<br>6 3697<br>6-1 2615-1<br>2 3 3<br>4 4<br>5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.94#2.34E-     |           | 46.5             | <b>y</b>            | <b>5.</b> 96 - 61 |   |
| 6 8123<br>0 3697<br>6-1 2615-1<br>2 2 3 3<br>4 4<br>5 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.71 10.06E     |           | 46.4             | <b>3</b> 00         | 1. 16 01          |   |
| 6-1 2615-1<br>2 2 2 2<br>3 3 3<br>4 4 4<br>5 8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |           | 73.1             | <b>5</b> C          | 2. IE 60          |   |
| 6-1 2615-1<br>3 3 3<br>4 4<br>5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5410.33E      | 0.0370    | \$6.5            | <b>5</b> 0 <b>0</b> | 5. IE-CI          |   |
| 2 2 2 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2910.89E      |           | 12.5             | 300                 | 1. (6- 62         |   |
| 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |           | 31.3             | <b>3</b> 0 <b>2</b> | 1. EE C3          |   |
| 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2711.076      |           | 44.3             | <b>3</b> 0 <b>2</b> | 3. (E-C2          |   |
| 5 5 5<br>7 7 CAF-<br>20 8123 CDS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *               |           | 1.13             | <b>3</b> 0 <b>2</b> | 5. (E-C2          |   |
| 20 8123 CDS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |           | 38.              | 305                 | 6. tf CC          |   |
| 20 8123 CDS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0040.22€      |           | \$0°             | 85<br>O             | ָ שַ              |   |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.71 40.04 8    |           | 72.1             | <b>~</b>            | 2. (E 00          |   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0240.05E      |           | <b>65.</b>       | <u>۲</u>            | 2. 1E CO          |   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7340.178 05   |           | 7.08             | <b>5</b>            | 5.4E CC           |   |

|                                       | ANAL /MON                       | ñ            | 3. (E CO    | پې          |        | 3. (E CO    | , Se C       | . SE- C       | . if        |            |            | ٠                     | (E            | 1            | 2. ft-c1  | w            | 2. £6-01     |             | Ę.         |             | ĥ          | æ           | Ę.         | 1E-       | •            | Ę,          | 1. 36 01       | • <del>.</del> £ | ÷.            |               |
|---------------------------------------|---------------------------------|--------------|-------------|-------------|--------|-------------|--------------|---------------|-------------|------------|------------|-----------------------|---------------|--------------|-----------|--------------|--------------|-------------|------------|-------------|------------|-------------|------------|-----------|--------------|-------------|----------------|------------------|---------------|---------------|
|                                       | COUNT                           | 32           | 20          | 36          | 2      | )?<br>(     | 20           | 30 <b>C</b>   | 3 C         | <b>)</b> 4 | 3 C        | 3 C                   | 2             | <b>y</b>     | 40        | <b>4</b>     | <b>3</b> 0   | <b>3</b> C  | <b>5</b> C | <b>5</b> C  | 20         | Š           | <b>3</b> C | 0         | u            | u           | <b>3</b> 00    | u                | u             | Ü             |
|                                       | Y SELC<br>(R*RE<br>MORK)        | 66.1         | ۴,          |             | 24.5   | ~           | N            | ÷             | ~           | -          | ~          | <b>6</b> 9 <b>,</b> 4 | G             | 4            | ÷         | 5            |              | +           |            | _           | σ          | ç           | <u>,</u>   | ij        | ;            | ÷           | 43.1           | š                | 14.6          |               |
| 1                                     | URAN IUN<br>(MICRO<br>GRÉMS )   |              | 115.        | ;<br>;      |        |             |              |               |             |            |            |                       |               |              |           |              |              |             |            |             |            |             |            |           |              |             |                |                  |               |               |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FU-239,240<br>ACTIVITY<br>(OFF) | .53 t0.04E 0 | .4940.10E D | .1840.03E D | 340,01 | .6540.18E 0 | .21 40.116 0 | .22 40 . 26 E | .35 40.08 6 | .34 to.11E | .78 t0.04E | .01 40.23E            | .00 to. 14 E  | .00 to. 18 E | 316.1116. | .00 40. 20 E | .00 40.14    | .94 40.05 E | 3940.06E   | .30 to.04 E | .71 to.05E | .27 to.01 E | .61 to.84E | .4911.336 | .2014.80 E-0 | .3241.28E-0 | .04 to. 18 E O | .5048.50E-0      | .28 41.01 E-0 | .70 to.17 £ 0 |
|                                       | TLW<br>ANALYSIS<br>NO.          | CDS-1166     | 1147        | 1148        | 1149   | 1150        | 1111         | 1739          | 1152        | $\sim$     | CD S-1153  | _                     | CC0-1602      |              | 1604      | 1605         | Ų            | CD 5-1155   |            | 1157        | 1158       | 1159        | 1160       | 14-1      | 1591-000     |             | 1653           | 1654             | 91-           | _             |
| (CONTINUED)                           |                                 | B123         | ;           |             |        | 8124        |              | 8688          | 8124        | l<br>•     |            |                       | 2568-1        | )            | 'n        | •            | •            | 8124        |            |             |            |             |            | 3526      | 3402-1       | )           | ) em           |                  | •             | 3\$00         |
| TABLE E.2 (CO)                        | LOCATION                        | j 11         | •           |             | 0 2 5  | "           | 17           | 1             | 191         | -          | 451        | 77                    | 4<br>42<br>40 | ,            | , en      | •            | · <b>6</b> 7 | 45          | -          | ~           | 1          | 0.24        |            | 4         | +            |             | , ~            | •                | • •           | 000           |
|                                       | ARC                             |              | )           |             |        | ı           |              |               |             |            |            |                       |               |              |           |              |              | _           |            |             |            |             |            |           |              |             |                |                  |               | 7             |

173

| TABI | IABLE E.2 (CONTIN                       | ONTENUED)                   |                        |                                 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • • • • • • • • • • • • • • • • • • • • | 1                   |                 | į   |
|------|-----------------------------------------|-----------------------------|------------------------|---------------------------------|-----------------------------------------|-----------------------------------------|---------------------|-----------------|-----|
| AAC  | AAC LOCATION                            | 11 W<br>COLLEC 11 ON<br>NO. | TLW<br>ANALYSES<br>NC. | PU-239,240<br>ACTIVITY<br>IDFP) | URAN IUN<br>(PICRO<br>GRAMS)            | Y IELC<br>(R*RE<br>WORK)                | COUNT               | ANAL MON        |     |
| 1    | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |                             |                        |                                 |                                         |                                         |                     |                 |     |
| _    | 050                                     | 3492                        | CTA- 425               | 4.45 to.33E 00                  |                                         | 3.6                                     | 734                 | 4. (F           | 0   |
| ,    | 022-1                                   | 2676-1                      | CAD- 717               | 1.10 to. 70 E-01                |                                         | 76.1                                    | <b>3</b> CC         | _               | ္ဌ  |
|      | •                                       | ~                           | 21.8                   | 6.00#4.00 E-02                  |                                         | 76.0                                    | 300                 | _               | _   |
|      | • 11                                    | \$ <b>4</b> 43              | 719                    | 4.00 t6.00 E-02                 |                                         | 66.7                                    | 308                 | CA 1. (E 00     | 0   |
|      | 4                                       | •                           | 120                    | 4.30 tl. 30 E-01                |                                         | 45.2                                    | 2C C                | •               | _   |
|      | - 40                                    | . 40                        | 721                    | 1.10 to. 80 E-01                |                                         | 5.4.5                                   | 300                 | •               | _   |
|      | , ~                                     | •                           | CAF- 722               | 1.80 to. 70 E-01                |                                         | 11.6                                    | <b>300</b>          | CA 5. (E-0      | 70  |
|      | 0.24-1                                  | 2663-1                      | CCD- 181               | 4.70 +1.00 E-01                 |                                         | 39.4                                    | 300                 | <b>1.</b> (E    | င္ပ |
|      |                                         | • 653.1                     |                        | 0.4011.005-01                   |                                         | 26.3                                    | 704                 | 1. (E-          | ~   |
|      | 4 (1                                    | 8 647                       | 183                    | 1.80 +0.80 E-01                 |                                         | 57.5                                    | 704                 | 1. (E-          | _   |
|      | 3 🕶                                     | •                           | \$ <b>0</b> ~          | 0.0040.05E 00                   |                                         | 61.3                                    | 400                 | 1. (E-          | 5   |
|      | r sn                                    | · •                         |                        | 1.90 to. 70 E-01                |                                         | 81.C                                    | 20C                 | 2. EE 0         | o   |
|      | 0.26-1                                  | 2656-1                      | LCD-1623               | 4.7643.57E-01                   |                                         | 4.00                                    | 4                   | 1. CE 0         | 0   |
|      |                                         | 7                           | _                      | -5.00 #7.50 £-02                |                                         | 16.5                                    | <b>30</b> 0         | 1. CE C         | 0   |
|      | ı en                                    | , m                         | 1625                   | 1.6840.18E 00                   |                                         | 75.C                                    | <b>30</b> 2         | 4-26-0          | _   |
|      | •                                       | •                           | 1626                   | 5.7045.70E-02                   |                                         | 74.2                                    | <b>308</b>          | 7. (6-0         | 6   |
|      | . w                                     | . <b>K</b> U                | -                      | 2.78#1.04E-01                   |                                         | 0 6 6 . C                               | 2CC                 | 4. CE-0         | _   |
|      | 0.28-1                                  | 2475-1                      | CAD- 711               | 1.11 #0.03E 03                  |                                         | 66.6                                    | <b>3</b> C          | 6. ¿E           | ပ   |
|      | ~                                       | ~                           |                        | 0.5041.00£-01                   |                                         | 45.7                                    | )<br>)<br>(         | CA 1. (E 0      | 0   |
|      | •                                       | •                           | 713                    | 2.70#1.106-01                   |                                         | 65.1                                    | <b>30</b> 0         | J. (£           | 0   |
|      | ) <b>A</b>                              | <b>₹</b>                    | 714                    | 7.00 \$6.00 E-02                |                                         | 19.6                                    | <b>3</b> 00         | <br>E           | 0   |
|      | •                                       | · •                         | 715                    | 0.0040.03E 00                   |                                         | 30·C                                    | <b>3</b> CC         | J. CE           | o   |
|      | ) P-                                    | . ~                         |                        | .10+11.20E                      |                                         | 69.6                                    | <b>5</b> CC         | CA 1. (E 0      | 0   |
|      | 0.22-1                                  | 2457-1                      | CC0- 166               | 2.1240.04E 02                   |                                         | 16.8                                    | 302                 | <b>4.</b> (€ −0 | _   |
|      | •                                       | 7                           |                        | .39 to. 24E                     |                                         | 50.5                                    | 300                 | 1. (E 0         | 0   |
|      |                                         | 1119                        | 168                    | .6041.208                       |                                         | 49.0                                    | 306                 | 1. CE           | 0   |
|      | •                                       | •                           | 169                    | .1102.                          |                                         | 30.1                                    | <b>30</b> 2         | CA 1. (E-0      | ~   |
|      | *                                       | 41                          | 17                     | •                               |                                         | 45.0                                    | FCC                 | . Œ.            | ~   |
|      | 1-5:0                                   | 2613-1                      | CAO- 699               | .6640.                          |                                         | 36.0                                    | <b>3</b> 0 <b>C</b> | 2. E 0          | 0   |
|      |                                         |                             |                        |                                 |                                         |                                         |                     |                 |     |

|     | induit est (continued)                  | (TOOLS)                                  |                                 | ************************************** |                                 |                          |               |             | ******   |
|-----|-----------------------------------------|------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|--------------------------|---------------|-------------|----------|
| ARC | ARC LOCATION                            | 16 T T T T T T T T T T T T T T T T T T T | TIL<br>ANALYSIS<br>NC.          | PU-239,240<br>ACTIVITY<br>(DFP)        | CP ICRO                         | Y JELC<br>(R*RE<br>MORK) | COUNT<br>TIME |             | ANAL MON |
|     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>†<br>†<br>†<br>†<br>†               | r<br>6<br>7<br>1<br>1<br>1<br>1 | 980339999                              | •<br>•<br>•<br>•<br>•<br>•<br>• |                          |               | !<br>!<br>! |          |
| 7   | 034-2                                   | 2613-2                                   | CAD- 700                        | 0.80 11.00 6-01                        |                                 | 73.1                     | 3CC           | 5           | 3. CE-01 |
|     | •                                       | m                                        | 101                             | 4.0045.00E-02                          |                                 | 73,                      | <b>4</b> CC   | 5           | 1. (E 00 |
|     | •                                       | •                                        | 702                             | 1.0040.606-01                          |                                 | 62.                      | 40            | 5           | 1. CE CO |
|     | ÷                                       | ÷                                        | 703                             | 9.00 #4.00 E-02                        |                                 | 9.99                     | )<br><b>∀</b> | 3           | 1. CE CO |
|     | <b> -</b>                               | 7                                        | CAF- 704                        | 6.10+1.80E-01                          |                                 | 79.€                     | 100           | Į,          | 2. CE-02 |
|     | 026                                     | 3489                                     | C 1A-1361                       | 7.87 to. 32E 01                        |                                 | 26.4                     | <b>306</b>    |             | 1. 26 00 |
|     | 638-1                                   | 2658-1                                   | CCD- 171                        | 6.00 to. 70 E-01                       |                                 | \$4.5                    | 77            | 5           | 1. (E-C1 |
|     | ~                                       | 7                                        | 172                             | 2.00+1.30E-01                          |                                 | 36.3                     | )<br>)<br>(   | 3           | 1. (E 00 |
|     | •                                       | m                                        | 173                             |                                        |                                 | 69.3                     | 30C           | 3           | 1. CE OC |
|     | •                                       | 4                                        | 174                             | 1.44 to. 20 E 00                       |                                 | 46.3                     | 200           |             | 8. (E-01 |
|     | *                                       | <b>K</b>                                 | CCF- 175                        | 4.1048.106-02                          |                                 | 58.1                     | <b>30</b> 0   | 5           | 2. (E-03 |
|     | 1-053                                   | 2674-1                                   |                                 | 6.35 to.21E 01                         |                                 | 75.0                     | )<br>)<br>(   |             | 4. SE 00 |
|     | ~                                       | 7                                        |                                 | 1.60 #0.50 €-01                        |                                 | 11.1                     | 400           | ರ           | 1. CE 00 |
|     | <b>F279</b>                             | <b>(1</b> )                              | 707                             | 1.80 to. 30 E-01                       |                                 | 61.3                     | 1000          | 5           | 1. CE 00 |
|     | ₩.                                      | •                                        | 108                             | 5.00 14.00 E-02                        |                                 | 72.0                     | 300           | 5           | 1. (E CO |
|     | ÷                                       | •                                        |                                 | 1.20 +0.40 €-01                        | •                               | 71.5                     | 200           | 5           | 1. G 00  |
|     | _                                       | ~                                        | CAF- 710                        | 2.20 +0.70 €-01                        |                                 |                          | <b>3</b> CC   | 3           | 5. (E-C2 |
|     | 045                                     | 3450                                     |                                 | 7.15 to. 19 6 02                       |                                 | 11.3                     | 7             |             | 1. CE CO |
|     | 045-1                                   | 2584-1                                   |                                 | 1.7640.19€ 00                          |                                 | 12.3                     | 200           | 5           | 2. (E CO |
|     | ~                                       | ~                                        | 724                             | 1.76 to.26E 00                         |                                 | 35.6                     | )<br>)<br>(   | ರ           |          |
|     | m                                       | ~                                        | 725                             | 2.30 +1.60E-01                         |                                 | 36.5                     | <b>3</b> 00   | 3           |          |
|     | •                                       | ~                                        | 126                             | 4.50 to. 90 E-01                       |                                 | 65.0                     | )<br>)<br>(   | 3           | w        |
|     | •                                       | ₩                                        | 727                             | 2.50 +1.00 E-01                        |                                 | 69.6                     | 300           | 5           | •        |
|     | p.                                      | ~                                        |                                 | 2.6041.30E-01                          |                                 | 72.3                     | 130           | 3           | 1. (E CO |
|     | 1-550                                   | 2661-1                                   | CCO- 176                        | 5.40 to. 32 E 00                       |                                 | 25.7                     | 300           | 3           |          |
|     | ~                                       | ~                                        | 177                             | 2.20 to. 80 E-01                       |                                 | 41.3                     | 300           | ರ           | 1. (E CO |
|     | ~                                       | 1-7                                      | 178                             | 1.7011.106-01                          |                                 | 41.5                     | <b>300</b>    | Z           | •        |
|     | *                                       | ~                                        | 179                             | 7.2041.30E-01                          |                                 | 36.6                     | )<br>)<br>(   | J           | 1.€ 00   |
|     | 'n                                      | 'n                                       | CCF- 180                        | 1.50 t0.80 E-01                        |                                 | 62.2                     | 30C           | 3           | 1. CE 00 |

| rabi | ABLE E.2 (CC | (CONTINUED)                             |                                                |                                 | 9<br>9<br>9<br>9<br>9<br>9              |                          | ;<br>4<br>8<br>9 |              | 1 4 2 |
|------|--------------|-----------------------------------------|------------------------------------------------|---------------------------------|-----------------------------------------|--------------------------|------------------|--------------|-------|
| , KC | LOCATION     | COLLE                                   | ANALYSI S<br>NO.                               | FU-239,240<br>ACTIVITY<br>(DPF) | C S P S C S C S C S P S C S C S C S C S | Y IELC<br>(R*RE<br>HORK) | COUNT<br>TIME    | ANAL /MON    | Z .   |
|      |              | · • • • • • • • • • • • • • • • • • • • | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                 |                                         | <br>                     |                  |              | !     |
| _    | 0.48         | 9.                                      | .A- 42                                         | .70 to. 80 E-C                  |                                         | *                        | Ç                | •            | 10-   |
| _    | 650          | 50                                      | 10-156                                         | .62 0.58E 0                     |                                         | <b>,</b>                 | O                | •            | ၀     |
|      | 022-1        | 2653-1                                  | 89                                             | .13 to.13E 0                    |                                         | -                        | U                |              | 10-   |
| _    | ~            |                                         | 99                                             | .4011.10E-0                     |                                         | •                        | ) <b>)</b> \$    | -            | 0     |
|      | 1 17         |                                         | 8                                              | .20 40.60 E-0                   |                                         | ä                        | S                | ۶.           |       |
|      | ) -g         | •                                       |                                                | .00 #4.00 E-0                   |                                         | ő                        | O                | 7            |       |
|      | · •          | . 4                                     | Ο.                                             | .00 #4.00 E-0                   |                                         | 14                       | Ç                | \$           |       |
|      | , r-         | •                                       | AF- 69                                         | .6010.50E-0                     |                                         | •,                       | C                | •            | 13-   |
|      | 024-1        | 2443-1                                  | ø                                              | .00 17.00 E-0                   |                                         | ~                        | J                |              |       |
|      |              | )<br>;                                  | 10                                             | .9041.00 E-0                    |                                         | ++3                      | 30£              |              | 00    |
|      | ) (F         | ा स्था                                  | •                                              | . 30 40.60 E-0                  |                                         |                          | U                | 177          |       |
|      | <b>.</b>     | ***                                     | V                                              | .70 \$1.30 E-0                  |                                         | <b>:</b>                 | U                | ÷            |       |
|      | · en         | · 40                                    | CF- 16                                         | .95 #0.18E 0                    |                                         | ÷                        | C                | •            | -03   |
|      | 028-1        | 2654-1                                  | O.                                             | .6640.07E 0                     |                                         | ~                        |                  | •            | 7     |
|      | 7            |                                         | 69                                             | .80 #0.20 E-0                   |                                         | <b>~</b> ;               | Ü                | _:           | -CI   |
|      | , eri        | · m                                     | Q.                                             | .60 10.50 E-0                   |                                         | ~                        | ب                | <b>:</b>     | 93    |
|      | • •          | 4                                       | σ                                              | .60 10.90 E-0                   |                                         | ÷                        | U                | -            | 90    |
|      | • •3         | ٠ س                                     | O.                                             | 0-305.04040                     |                                         | 'n,                      | Ċ                | •            | 00    |
|      | ~            | ·~                                      | CAF- 698                                       | 00 46 . 0                       |                                         | 15.7                     | 308              |              | 00    |
|      | 030          | <b>\$15</b>                             | 42                                             | .00 +1.00 €-0                   |                                         |                          | ن                |              | 10 -  |
|      | 0.20-2       | 8127-2                                  | DS-174                                         | .66 to.05 E C                   |                                         | ~                        |                  |              | ÇO    |
|      | · ~          | !                                       | 174                                            | .10 to 10 E                     |                                         | •;                       | 2                | •            | 00    |
|      | •            | **                                      | 74                                             | .\$3 to.03E 0                   |                                         | •                        |                  | ٠            | ဝ     |
|      | •            | •                                       | 3                                              | .5640.218 0                     |                                         | •                        |                  |              | ပ္ပ   |
|      | 032-3        | 2432-1                                  | 3                                              | .31 to.usE                      |                                         | ä                        |                  | •            | ၀၁    |
|      | ry<br>;      | ,                                       | 161                                            | .16 12.08 6-0                   |                                         | _:                       |                  | ٠            | -01   |
|      | , 44         |                                         | Ģ                                              | .2512.136-0                     |                                         | ü                        |                  | •            | 50-   |
|      | • •₹         | *                                       | J                                              | .88 11 . 77 E                   |                                         | 19.6                     |                  | •            |       |
|      | w            | ĸ                                       | 5                                              | .7710.756-0                     |                                         | ÷                        |                  | <b>₹.</b> (€ | - 03  |
|      |              |                                         |                                                |                                 |                                         |                          |                  |              |       |
| **   |              |                                         |                                                |                                 |                                         |                          |                  |              |       |

176

| ARC EO |              |                   |                                         |                                  |                                       |                          |                     |           |            |
|--------|--------------|-------------------|-----------------------------------------|----------------------------------|---------------------------------------|--------------------------|---------------------|-----------|------------|
|        | EOCATION     | COLLECTION<br>NO. | TLW<br>ANALYSIS<br>NG.                  | FU-239,240<br>ACTIVITY<br>(DF!!) | URANIUM<br>(FICRO<br>GRAMS)           | Y JELC<br>(R.RE<br>WORK) | COUNT<br>I IME      | ANAL JHON | <b>8</b> 0 |
|        | !<br>!       | *                 | : : : : : : : : : : : : : : : : : : : : |                                  | • • • • • • • • • • • • • • • • • • • | !<br>!<br>!              | ,<br> <br>          |           |            |
| ر 03   | 024-1        | 2633-1            | CCO- 151                                | 1.2040.80E-01                    |                                       | 61<br>61                 | 400                 | m.        | <b>~</b> ; |
| 1      | . ~          | ~                 |                                         | 2.00 t6.00 E-02                  |                                       | 62.1                     | <b>3</b> 0 <b>C</b> | CA 5. CE  | -03        |
|        | · (~)        | 'n                | 153                                     | 2.00 +1.20 5-01                  |                                       | 3 <b>.</b><br>9.         | 400                 | CA 3. (E  | -05        |
|        | <b>-</b>     | *                 | 154                                     | 1.01 50.40€ 00                   |                                       | 12.5                     | 400                 | -:        |            |
|        | . <b>F</b> L | · <b>v</b>        |                                         | .40 to .80 E                     |                                       | 37.6                     | <b>3</b> 00         | CA 5, (E  | -C         |
| 60     | <b>.</b>     | 1.5               |                                         | .301.106                         |                                       | 36.3                     | 400                 | CA 1. CE  | 8          |
| 60     | 8-1          | 634-1             | 951 -000                                | 1.10 +0.06 01                    |                                       | 49.€                     | <b>30C</b>          | 1.46      | 00         |
|        | . ~          | ~                 |                                         | .00 40.09                        |                                       | 55.5                     | <b>3</b> 0 <b>C</b> | 1. CE     | 00         |
|        | , (41        | 1 647             | 158                                     | .1013.008                        |                                       | 48.6                     | <b>308</b>          | CA 1. (E  | ္ဌ         |
|        | ٠ -          | 1 €7              | 159                                     | .00 49.00                        |                                       | 41.1                     | 30C                 | CA 1. (E  | 00         |
|        | · 47         | ~                 |                                         | .00.49.00                        |                                       | 63.1                     | 30C                 | CA 1. CE  | 8          |
| 0.4    | 040-1        | 2647-1            | CAD- 681                                | .00 to.06 E                      |                                       |                          | <b>308</b>          | CA 1.1E   | ច          |
| )      | · ~          | ~                 |                                         | 0.00 10.06 60                    |                                       | 80.0X                    | <b>9</b> 00         | 1. CE     | 0          |
|        | •            | ~                 | 683                                     | .00 #4 .00 E                     |                                       | 11.4                     | <b>3</b> 000        | CA 1. CE  | 0          |
|        | 2            | •                 | 489                                     | 2.00 #4.00 £-02                  |                                       | 66.3                     | <b>9</b> 0%         | <b>:</b>  | 00         |
|        | •            | 4                 | 685                                     | 1.00 43.00 6-02                  |                                       | 7.00                     | <b>3</b> 0          | CA 1. (E  | ខ          |
|        | _            | ~                 | AF-                                     | 1.2810.27E 00                    |                                       | 6 P                      | )<br>)<br>(         | 9. (E     | ຽ          |
| 40     | · ~          | 3508              | ٠                                       | .98 40.16 €                      |                                       | 10.0                     | )<br>)<br>(         | 1.        | 3          |
| 045    | 2-2          | 8127-2            | 1-50                                    | .73 to.53E                       |                                       | 141<br>41                | 300                 | J. 76     | 0          |
|        | m            | <b>E</b>          | 1747                                    | 0                                |                                       | 44.6                     | )<br>)<br>(         | 7. CE     | -03        |
|        | •            | •                 | 1.748                                   | 3.88 to. 10f 02                  |                                       | £0.5                     | )<br>)<br>(         | 3. 56     | ~          |
|        | Ś            | •                 | 1749                                    | .5a to. 11 E                     |                                       | 11.1                     | 300                 | 3. EE     | 5          |
| 40     | 044-1        | 2645-1            | 8191-000                                | 0                                |                                       | 63.1                     | 2CC                 | 1. 4E     | 5          |
| ,      | ~            | 13                |                                         | .7343.45E                        |                                       | 41.0                     | <b>)</b>            | 1. (6     | 8          |
|        | •            | •                 | 1620                                    | .67 42.75 E-0                    |                                       | 7                        | <b>)</b>            | 1. (E     | S          |
|        | •            | •                 | 1621                                    | . 17E                            |                                       | 55.5                     | <b>3</b> 0 <b>C</b> | (E        |            |
|        | · •          | ~                 | •                                       | 4.1914.798-01                    |                                       | 4.44                     | <b>V</b>            |           | 10-        |
| 40     | C46-1        | 8127              | COS-1500                                | 5.18 to . 57 € 00                |                                       | 14.1                     | 2cc                 | 3.26      |            |
| •      | 14           | 8127-2            | 1221                                    | .0010.246 0                      |                                       | 62.                      | 308                 | •         |            |

| TAB | TABLE E.2 (CONTINU                    | ONTINUED)                                                                                   |                                                                                                       |                                      | 0<br>6<br>8<br>8<br>8<br>8<br>8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             | -        | ;            |      |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|-------------|----------|--------------|------|
| ARC | ARC LOCATION                          | 16.6                                                                                        | #1L                                                                                                   | FU-239,240                           | NOT WE WO                       | 3731 4                                  | COUNT       |          | ANAL /MON    |      |
|     |                                       | COLLEC 11 C4                                                                                | •                                                                                                     | ACT # V 2 T Y (OP P. )               | GRAMS )                         | MORK 5                                  | K           | 1        |              | :    |
|     | • • • • • • • • • • • • • • • • • • • | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0 7 8 7 Y 8 8 8 8 8 9 8 9 9 8 10 7 7 |                                 |                                         |             |          |              |      |
| د   | 046-3                                 | 8127-3                                                                                      | CD 5-1 752                                                                                            | .17 10.43                            |                                 | 36.4                                    | 306         | _        | . (E-03      | _    |
|     | -                                     | •                                                                                           | -                                                                                                     | .30 to. 29E                          |                                 | 65.1                                    | <b>3</b> CC | 14       | , <u>;</u> £ | _    |
|     | · •••                                 | · •                                                                                         | 1754                                                                                                  | .68 10.08                            |                                 | -                                       | <b>30</b> 6 | ~        | <del>.</del> | ~    |
|     | 8-940                                 | 125                                                                                         | 1169                                                                                                  | 9.7740.278 02                        |                                 | •                                       | ęç          |          |              |      |
|     | 2.<br>2.                              | 3307                                                                                        | <b>TA</b> -                                                                                           | .73 to.16E 0                         |                                 | •                                       | 100         | 3        | 35.          | _    |
|     | 048                                   | •                                                                                           | C TD-1662                                                                                             | .32 tO.17 £ 0                        |                                 |                                         | )) <b>?</b> | ~        | 35.          | _    |
|     | 0.0                                   | 127-                                                                                        | 0 5-1                                                                                                 | .24 #0.53E 0                         |                                 | 66.5                                    | 30C         | ,-       | • 2€         | _    |
|     | ~                                     |                                                                                             | -                                                                                                     | .65 tO. 37E. 0                       |                                 | 46.4                                    | <b>302</b>  | .4       | 35.          | _    |
|     | ) (C)                                 | ; e41                                                                                       | 1757                                                                                                  | .79 to.17 6 0                        |                                 |                                         | 306         | ~        | 33.          | 0    |
|     | •                                     | •                                                                                           | 1758                                                                                                  | .8040.17E 0                          |                                 | A. 8.                                   | 1400        | •        | . EE         | _    |
|     | * 19E7                                | **                                                                                          | 1759                                                                                                  | .85 tO.88E 0                         |                                 |                                         | 30Z         | _        | . E          | 0    |
| z   | 070                                   | 695                                                                                         | TA-                                                                                                   | 1.08 +0.18 500                       |                                 | 41.4                                    | <b>302</b>  | 7        | • CE 00      | 0    |
| :   | 022-1                                 |                                                                                             | CAD- 742                                                                                              | .0049.005-0                          |                                 | A. C.                                   | 3cc         | 2        | . (A Q       | 0    |
|     | ~                                     |                                                                                             |                                                                                                       | 4.2042.106-01                        |                                 | 33.6                                    | <b>3</b> 28 | 2        | ě.           | 0    |
|     | · (41                                 | ~                                                                                           | 144                                                                                                   | 1.10 to. 30 E-01                     |                                 | 61.3                                    | 300         | 3        | · CE-0       | _    |
|     | •                                     | •                                                                                           | 345                                                                                                   | 1.1040.805-01                        |                                 | 65.3                                    | 30 <b>c</b> | _<br>უ   | S. O         | 0    |
|     | •                                     |                                                                                             | 146                                                                                                   | 2.0041.00 €-01                       |                                 | 40.5                                    | 704         | 5        | . (E-0       | ~4   |
|     | -                                     | _                                                                                           |                                                                                                       | 1.9041.106-01                        |                                 | 76.2                                    | 30 <b>2</b> | 5        | . (E-C       | ~    |
|     | 026                                   | 3572                                                                                        |                                                                                                       |                                      |                                 | 42.C                                    | <b>302</b>  |          | 3            | _    |
|     | 026-1                                 | 3336-1                                                                                      | CCD- 216                                                                                              | •                                    |                                 | 30.€                                    | 400         | Ck 2     | 3            | ~    |
|     | 7                                     | )<br>                                                                                       |                                                                                                       | .9041                                |                                 | 91.1                                    | 322         | 7        | • (E         | 0    |
|     | · (**                                 | · 647                                                                                       | 218                                                                                                   | •                                    |                                 | 14.2                                    | <b>3</b> CC | <u>ح</u> |              | _    |
|     | •                                     | •                                                                                           | 219                                                                                                   | •                                    |                                 | 10.6                                    | <b>30C</b>  | 5        | , (E-        | ~    |
|     | •                                     | •                                                                                           | Cf.                                                                                                   | 00 16.                               |                                 | 72.3                                    | <b>3</b> 2C | •        | • {E         | _    |
|     | 028-1                                 | 3346-1                                                                                      | CAD-1646                                                                                              | 67 40                                |                                 | 16.0                                    | <b>5</b> CC |          | •            | et d |
|     | ~                                     | 1                                                                                           | _                                                                                                     | Ň                                    |                                 | 29.5                                    | 300         | •        | ٦.           |      |
|     | •                                     | ~                                                                                           | 1642                                                                                                  | •                                    |                                 | €2.6                                    | <b>302</b>  | ~        | • !E-        | _    |
|     | •                                     | •                                                                                           | 1643                                                                                                  | 78 +0. 99 8                          |                                 | 59.4                                    | 20C         | •        | •            | _    |
|     | ه.                                    | •                                                                                           | 1644                                                                                                  | .07 10.61                            |                                 | 11.1                                    | 308         | •        | • (E-        | _    |
|     | ,                                     |                                                                                             |                                                                                                       |                                      |                                 |                                         |             |          |              |      |

178

| ARC | ARC LOCATION | 1L W<br>COLLECTION<br>NO. | ANALYSI S<br>NO. | FU-239,240<br>&CTIVITY<br>(DFP) | URANIUM<br>(FICRO<br>GRAMS) | Y JELC<br>I R * R E<br>WORK J | TIME                | ANAL    | ANAL JHON |
|-----|--------------|---------------------------|------------------|---------------------------------|-----------------------------|-------------------------------|---------------------|---------|-----------|
| z   | 028-7        | 37.6-7                    | CAF-1645         | 1.20#1.206-01                   |                             | 49.0                          | 2C C                | 2.      | (E-03     |
| :   | 0 20         |                           | 7                | 1.71 +0.05 8 02                 |                             |                               | 300                 |         | (E-03     |
|     | 032-1        | 334-1                     | CCD- 211         | 9.00 \$6.00 E-02                |                             | 49.5                          | <b>3</b> CC         | CA 2.   | 2. (E-02  |
|     | æ            | ~                         | 212              | 2.5041.00E-01                   |                             | 37.2                          | )<br>()<br>()       | •       | CE-02     |
|     | · ~          | m                         | 213              | 3.70 +2.90 6-01                 |                             | 34.4                          | <b>4</b> CC         | -       | 1.66 00   |
|     | •            | 4                         | 514              | 8.10 11.50 6-01                 |                             | 45.1                          | 328                 | 4       | (E-C2     |
|     | . RJ         |                           | N                | 6.6011.00E-01                   |                             | 80.1                          | 3C C                | -       | (E-05     |
|     | 036          | 573                       | CIA- 435         | 1.16 to.04E 02                  |                             | 85.5                          | 36                  | *       | 10-35     |
|     | 040          | S 42                      | 97               | 9.15 to.726 00                  |                             | 25.B                          | 2CC                 | Ψ.      | 3€ 00     |
|     | 040-1        | 3349-1                    | CAO- 748         | 2.00 to. 70 E-01                |                             | 49.8                          | 704                 | CA 1.   | íE CO     |
|     | ~            | ~                         | 149              | 3.00 47.00 E-02                 |                             | 24.6                          | <b>4</b> CC         | •       | \$ (E-05  |
|     | · m          | m                         | 150              | 0.3041.006-01                   |                             | 35°6                          | 300                 |         | (F 30     |
|     | •            | •                         | 151              | 2.50 #2.10 E-01                 |                             | 19.2                          | <b>4</b> C¢         | CA 1.   | (E 00     |
|     | <b>4</b> 0   | Ų                         | 152              | 1.00 40.70 5-01                 |                             | \$4.4                         | 300                 |         | 10-3)     |
|     | ~            |                           |                  | 4.00 #1.40 E-01                 |                             | 70.1                          | 96                  | _       | (E-03     |
|     | 045          | 571                       | C 14- 433        | 4.2044.206-01                   |                             | 51.1                          | <b>3</b> 00         | 5       | (E 00     |
|     | 046-1        |                           |                  | 1.51 to.07E G1                  |                             | •                             | 3 C C               | •••     | £E 00     |
|     | ~            | ~                         |                  | 1.60 +1.60 E-01                 |                             |                               | <b>4</b> C          | •       | (E-C2     |
|     | ~            | •                         | 156              | 0.20 \$1.00 E-01                |                             | 37.7                          | 306                 | <b></b> | 00<br>3)  |
|     | *            | •                         | 151              | 9.00 t9.00 E-02                 |                             | -                             | 30C                 | ~       | . (E-02   |
|     | •0           | Ý                         | 158              | 9.00 tb.00E-02                  |                             | 4                             | <b>400</b>          | •       | £-01      |
|     | ~            |                           | CAF- 759         | 2.00 14.00 E-02                 |                             | ~                             | 3C C                | ∵<br>3  | (E-03     |
|     | 040          | 558                       | C 1A- 431        | 5.20 11.30 E-01                 |                             | 36.2                          | 3C C                | _       | (E 00     |
| 0   | 045          | 8126                      | CC 11-500        | 1.32 to.03E 04                  |                             | 65.3                          | 2                   |         |           |
|     | 046-A        |                           | 11.71            |                                 |                             | •                             | Ç                   |         |           |
| a.  | 273          | 3662                      | 14-1             | .1510.236                       | 2060.0                      | 7. °C                         | 308                 | ÷       | ).<br>26  |
|     | 0.50         | 3667                      | C 10-1315        | .4310.128                       | 0.0880                      | 69.1                          | 906                 |         | . SE-C1   |
|     | 1-520        | 1-226                     | 5691-000         | .6211.46E                       |                             | 11.6                          | <b>3</b> 0 <b>%</b> | Š       | €-01      |
|     |              |                           |                  |                                 |                             | •                             |                     |         |           |

| TAB | TABLE E.2 (CONTILUED) | NTTL.UED)                |                         |                                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ;<br>6<br>9<br>9             | ;             |          |               |  |
|-----|-----------------------|--------------------------|-------------------------|---------------------------------|----------------------------------------------------------|------------------------------|---------------|----------|---------------|--|
| AAC | L0CA113N              | TLW<br>COLLECTION<br>NO. | TEW<br>ANALYSI S<br>NG. | FU-239,240<br>ACTIVITY<br>(DFP) | URAN 1UM<br>I M I CRO<br>GRAMS )                         | Y SEL D<br>I R "RE<br>WORK S | COUNT<br>TIME | ₩ W ₩    | ANAL JHON     |  |
|     |                       |                          |                         |                                 | †<br>• • • • • • • • • • • • • • • • • • •               |                              |               |          |               |  |
| ۵,  | 6-520                 | 3322-3                   | CCD-1637                | .37 tO. /BE                     |                                                          | u                            | ر<br>در       |          | 1             |  |
|     | +                     | 4                        |                         | .1641.30E                       |                                                          | <b>u</b> 1                   | 30Z           | _        | · 16-         |  |
|     | •                     | ĸ                        | 7                       | .03 to . 69 E-0                 |                                                          | ~                            | <b>302</b>    | •        | ë.            |  |
|     | 026                   | 993                      | C1A- 420                | .15 tO. 19E O                   |                                                          | -                            | .200          | UMF      | - 34.         |  |
|     | 030                   | 9                        |                         | .16 #0.18E 0                    |                                                          | ٣1                           | <b>30</b> 0   | _        | • (E-         |  |
|     | 030                   | 6628                     | 7                       | 3040.406                        |                                                          | ~                            | 500           | _        | . CE-         |  |
|     | 024-1                 | 318-                     | CC0- 201                | .1340.09E 0                     |                                                          | O                            | 30°           | _        | • EE          |  |
|     | • •                   |                          |                         | .50 to. 13E 0                   |                                                          | 72.C                         | 400           | •        | • <b>(E</b> ~ |  |
|     |                       | m                        | 203                     | .60 41. 30 8-0                  |                                                          | O                            | 704           |          | . (E          |  |
|     | 4                     | 45                       | 204                     | .70 +1.00E                      |                                                          | 4                            | 30 <b>2</b>   | 2        |               |  |
|     | · vn                  | <b>S</b>                 | CCF- 205                | 2.80 +1.10 6-01                 |                                                          | 44.C                         | <b>30</b> 6   | <u>ა</u> | 00 3) •       |  |
|     | 036                   | 090                      |                         | .37 40.07E                      |                                                          | 81.2                         | 30            | 4        |               |  |
|     | 0.40-1                | 3316-1                   |                         | ,73 t0.09 E                     |                                                          | 19.1                         | <b>3</b> C    | 74       |               |  |
|     | ~                     |                          | 197                     | .85 t0.08 E                     |                                                          | 64.7                         | <b>308</b>    | •        |               |  |
|     | las.                  | m                        | 1 98                    | .04 t0 . 14 E                   |                                                          | 35.4                         | <b>4</b> CC   | (-1      |               |  |
|     | ∢                     | <b>-5</b>                | 1 99                    | 301.1107.                       |                                                          | 52.4                         | 30C           | 2        |               |  |
|     | 'n                    | v.                       |                         | .80 +11.30 E                    |                                                          | 28.2                         | <b>308</b>    | -<br>ئ   | • (E 00       |  |
|     | 045                   | C71                      | ,                       | .6140.03                        |                                                          | 11.1                         | <b>.</b>      | •        |               |  |
|     | 044-1                 | 3329-1                   | CCD- 206                | .43 #0.22E                      | 0.235                                                    | 62.6                         | )<br>}        | _        |               |  |
|     | ~                     | 7                        | 201                     | .37 40.136                      | •                                                        | 45.4                         | 100           | ~        |               |  |
|     | m                     | m                        | 802                     | .62 40.24E                      | •                                                        | 60.B                         | 30€           | 3        |               |  |
|     | •                     | 4                        | 508                     | .40 tl. 70 E                    | •                                                        | 3.8.5                        | )<br>)<br>}   | 3        | •             |  |
|     | W)                    | s.                       |                         | 301 * 1 * 00*                   | •                                                        | m;                           | <b>30</b> 2   | <u>ح</u> |               |  |
|     | 0.48                  | 3C73                     | C 10-1628               | .76 to.12E                      |                                                          | 69.5                         | <b>30</b> 2   | •        | - 35 •        |  |
|     | 750                   | 3072                     |                         | .64 tO . 16 E                   | 0.142                                                    | 62.7                         | 100           | •        | • (E-         |  |
|     | 040                   | 3665                     | _                       | .36 10.48 €                     |                                                          | €0.€                         | )<br>)<br>)   | ,        | • EE-         |  |
|     | 51.1                  | 3676                     | 10-1                    | 17 10                           |                                                          | 27.5                         | <b>3</b> 00   | _        | 1. SE-C1      |  |
| BAL | 11,96                 | 5294                     | CB 5-1442               | .25 10.07E                      |                                                          | 85.6                         | <u>۲</u>      | ~        | Ä,            |  |
|     | t. 11, P.22           |                          | 1644                    | 9                               |                                                          | 83.6                         | 20            | _        | , 1E do       |  |

| TAE | TABLE E.2 (CONTIN | (TINUED)     |                                      |                        | 1                      | 1               | 1<br>1<br>1<br>1 | *************************************** |
|-----|-------------------|--------------|--------------------------------------|------------------------|------------------------|-----------------|------------------|-----------------------------------------|
| ARC | LOCATION          | COLLEC TI ON | TLE<br>ANALYSIS<br>NO.               | PU-239,240<br>ACTIVITY | UR AN SUM<br>I F I CRO | Y JELC<br>IRORE | COUNT<br>TIME    | ANAL JHON                               |
|     |                   |              | ;<br>;<br>;<br>;<br>;<br>;<br>;<br>; |                        |                        |                 | ;<br>!<br>!      |                                         |
| BAL | _                 | 5284         | CBS-1434                             | .1240.09E 0            |                        | 14.1            | 20               |                                         |
|     | _                 |              | 1436                                 | .06 tO. 14E 0          |                        | ~               | 26               | 36                                      |
|     | L 12, P 9         |              | 1438                                 | .05E                   |                        | 19.1            | 36               |                                         |
|     | £ 12,019          |              | 1440                                 | .7310.096 0            |                        | 84.4            | 36               |                                         |
|     | 3,99              | 5298         | 1648                                 | .92 t0.09 E            |                        | 84.2            | <b>,</b>         | • tE                                    |
|     | 4.P 3             | 29           | 1446                                 | .28 t0.03E             |                        | 68.1            | 26               | . Es                                    |
|     | 1.15,917-1        | ~            | CCD-1656                             | .43 t0.08 E            |                        | 72.1            | <b>)</b>         | • £E                                    |
|     | 2                 | 2            | 1657                                 | .93 40.07E             |                        | . H.            | 203              | . E-                                    |
|     | •                 | m            | 1658                                 | .28 to .21 g           |                        | £. 2.           | 30°C             | • 4ñ                                    |
|     | 4                 | <b>√</b>     | 1659                                 | 0.0 9.                 |                        | 54.5            | <b>30</b> 2      | 2. EE-01                                |
|     | 80                |              | CF.                                  | .7 0.06E               |                        | 45.4            | <b>200</b>       | • 4E                                    |
|     | L 18, F 21        |              | CC0-2180                             | .6940.05E              | 3.70*                  | 15.4            | ¥                |                                         |
|     | 1.18,P21-3        | m            | 2130                                 | 07 tO. 12E             | 0.582                  | 75.5            | 36               |                                         |
|     | 4                 | 4            | 2331                                 | .87 10.07 E            | 4.                     | 16.6            | 30C              |                                         |
|     | \$                |              | CCF-2132                             | .75 10.43E             | 0.0103                 | 63.2            | 30C              |                                         |
|     | L 19,P9           | 1C13-A       |                                      | .79 to.13E             | 16                     | 02.68           | 300              |                                         |
|     | L 25,P 9 ·        | 3C38-A       | 21.79                                | .21 t0.00E             | 108,                   | £2.1            | <b>5</b> 80      |                                         |
|     | 129,89            | -995         | CCD-2181                             | .41 to.01E             | 6.20                   | 36.4            | 301              |                                         |
|     | £-6d.627          | ~            | 2133                                 | 360.                   | 0.0305                 | 10°C            | ر<br>دور         |                                         |
|     | 4                 | 4            |                                      | .38 tO.36E             |                        | 69.1            | 302              |                                         |
|     | S                 | S            | 1                                    | .68 tO.83E             | 0.00100                | 75.5            | 300              |                                         |
| M08 | KM-C07-1          | 3597-1       | 7                                    | .30 t0.02E             |                        | •               | 26               |                                         |
|     | ~                 | 2            | 222                                  | .00 to.06 E            |                        |                 | 30C              |                                         |
|     | ~                 | m            | 223                                  | 1.3240.086 01          |                        | 34.6            | 704              |                                         |
|     | •                 | •            | 224                                  | .5044.90E              |                        | 22.5.           | 300              | 1. (E                                   |
|     | <b>1</b> 0        | 5            |                                      | .00.49.00.             |                        |                 | 2C.C             | 1.6                                     |
|     | 1-11)             | 3405-1       | 2                                    | 7.7510.01E 02          |                        | 81.6            |                  | €. € 00                                 |
|     | 7                 | ~            | 181                                  | 4.60 t0.90 E-01        |                        | 10.4            |                  |                                         |
|     | <b>E</b>          | •            | 1 88                                 | 1.9011.106-1           | -                      | 63.6            |                  | CA 5. (E-02                             |

181

| TAB   | TABLE E.2 (CONTINUED) | NTINUED)   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                        |           |                 |             | -        |            | i          |
|-------|-----------------------|------------|---------------------------------------|------------------------|-----------|-----------------|-------------|----------|------------|------------|
| ARC   | ARC LOCA: 10N         | COLLECTION | Z                                     | FU-239,240<br>ACTIVITY | CP BN IUR | Y JELE<br>IR BE | COUNT       | Z        | ANAL JHON  |            |
| 1     | 9 9                   | -QN        | NO.                                   | (DFF)                  | GRAMS)    | MOKA            |             |          |            | i          |
| A. C. | KM-C13-4              | 3.05-4     | 07:                                   | 1.2340.15€ 00          |           | 64.6            | 200         | 3        | 0. (E B    | O          |
| )     | <b>1</b>              | . wa       | CCF- 190                              | -0.5041.006-01         |           | 29.1            | <b>4</b> 0¢ | ర        | •          | ~          |
|       | C12-1                 | 3000-1     | _                                     | 5.6640.19E G1          |           | 22.5            | 302         |          | 4.7E C     | 0          |
|       | 2                     | · ·        |                                       | 2.30#1.00E-01          |           | 41.0            | <b>300</b>  | 3        | 1. (E 90   | 0          |
|       | 1                     | m          | 193                                   | 7.5044.90E-01          |           | 11.1            | <b>30</b> 0 | చ        |            | 0          |
|       | 4                     | 4          | 194                                   | 1.3040.90E-01          |           | 54.6            | <b>3</b> 02 | 3        | 1. (E 0    | 0          |
|       | · 40                  | <b>L</b>   |                                       | 1.5040.806-01          |           | 65.0            | <b>30C</b>  | Z        | 1. CE C    | ္ပ         |
|       | C13-1                 | 3(09-1     | CAD- 729                              | 64 40.04E              | 0.279     | 64.6            | 36          |          | . 35       | 00         |
|       | 2                     |            |                                       | 3.77 to.27£ 00         | 0.0650    | 54.5            | 306         |          | 2. 76-01   |            |
|       | i en                  | i (41)     | 731                                   | 30 +1 . 20 E-          |           | 11.9            | 20C         | 3        | 2.15-0     | _          |
|       | 4                     | 4          | 732                                   | 00 44.00 E-0           |           | 71.5            | 306         | 2        | 1.16-01    | _          |
|       | 4                     | •          | 133                                   | 2.00#3.00E-02          |           | 75.2            | ) ) ( (     | 5        | 2. CE-C    | _          |
|       |                       | ~          |                                       | 1.7041.30E-01          | 0.181     | 27.7            | 20C         |          | 3. CE-0    | ~          |
|       | C14-1                 | 3C10-1     | CAD- 735                              |                        |           | 73.0            | 36          |          | 8.1E 0     | 00         |
|       | ~                     |            | 736                                   | 1.6940.045 03          |           | 17.8            | 300         |          |            | ~          |
|       | m                     | (P)        | 737                                   | 4.00 #7.00 E-02        |           | 64.3            | 321         | చ        |            | 0          |
|       | *                     | •          | 738                                   | 0.00 #0.06 E 00        |           | 3° C            | 100         |          | 1. (E C    | 00         |
|       | 9                     | Ą          | 140                                   | 6.0049.00E-02          |           | 76.2            | 100         | 2        |            | 00         |
|       | ~                     | ~          |                                       | 0.0040.05E 00          |           | 76.0            | 30C         | 3        | 3 - 3) • 1 | <b>6</b> 2 |
|       | C & 6-1               | 1-6556     | CCD- 226                              | 1.80 #0.06E 02         |           | 76.1            | )<br>)<br>  |          |            | ပ          |
|       | ~                     | -          |                                       | .3041.10E              |           | 41.6            | 20C         | 3        |            | Ċ          |
|       | ~                     | ~          | 228                                   | 3.00 \$2.60 £-01       |           | 24.1            | 306         | ರ        |            | 0          |
|       | 4                     | 4          | 553                                   | 2.4041.00E-01          |           | 62.1            | 30C         | 2        |            | 0          |
|       | 8,                    | S          | CCF- 230                              | -2.00 44.00 E-02       |           |                 |             | <b>I</b> | 1. (E C    | G          |
| 70    | CHR-A3A               | 9101       | C VS-2092                             | .12 #0.61E             |           | 27.5R           | <b>3</b> C  |          |            |            |
|       | A 38                  |            | $\sim$                                | .0140.20E 5            |           |                 |             |          |            |            |
|       | A SA                  |            | 2094                                  | 1.21 to.04E 01         |           |                 | 201         |          |            |            |
|       | A 48                  |            | 2095                                  |                        |           |                 | <b>)</b> )} |          |            |            |
|       | ₹<br><b>V</b>         |            | 2097                                  | 3.3440.208 00          |           |                 | 200         |          |            |            |

| TAB    | TABLE E.2 (CONTINUED)                   | (TINUED)       | # # # # # # # # # # # # # # # # # # # | • • • • • • • • • • • • • • • • • • • |                             |                              |                     | *************************************** |  |
|--------|-----------------------------------------|----------------|---------------------------------------|---------------------------------------|-----------------------------|------------------------------|---------------------|-----------------------------------------|--|
| ) d V  | LOCATION                                | COLLECTICN NO. | ₹<br>4                                | FU-239,240<br>AC11917Y<br>IDFP)       | UMPNIUM<br>(PICRO<br>GRAMS) | Y IEL C<br>FR * RE<br>WORK 1 | 11KE                | ANAL MON                                |  |
|        | : : : : : : : : : : : : : : : : : : : : |                | • • • • • • • • • • • • • • • • • • • | •                                     |                             |                              |                     |                                         |  |
| 40     | CHR-434                                 | 9121           | C VS-2098                             |                                       |                             | 76 - 3                       |                     |                                         |  |
| ,      | 15 ¥ 1112                               |                | . ~                                   |                                       |                             | 10.5                         | 1001                |                                         |  |
|        | \ <del>\</del>                          |                | 23.00                                 |                                       |                             | 47.7                         | 2                   |                                         |  |
|        | ¥ 4€                                    |                | 2101                                  |                                       |                             | 71.1                         | 20.                 |                                         |  |
|        | . d<br>. d<br>. d                       |                | 2102                                  |                                       |                             | 12.4                         | 2                   |                                         |  |
|        | ( d)                                    |                | 2103                                  |                                       |                             | ٤١.٦                         | )3 <b>?</b>         | •                                       |  |
|        | 41x - A13                               | 4656           | CDS-1161                              |                                       |                             | 11.4                         | 221                 | 2.4E 00                                 |  |
|        | 418                                     |                | . ~                                   |                                       |                             | 40 P                         | ¥                   | 5. (F C0                                |  |
|        | 7 W                                     |                | 1163                                  |                                       |                             | ** 29                        | ) <u>)</u>          | 4. EF                                   |  |
|        |                                         |                | 1164                                  |                                       |                             | 60.2                         | 22                  | 1. {{ c1                                |  |
|        | 2 5                                     |                | 1165                                  |                                       |                             | e 1.5                        | )<br>)<br>          | 1. (5 0)                                |  |
|        | - C                                     |                | 1166                                  | .12 40.08E                            |                             | t t . t                      | 100                 | 3. 1E 01                                |  |
|        | 2 6                                     |                | 1167                                  | .77 10.09 E                           |                             | 34.2                         | 10 <b>C</b>         | 3. 16 01                                |  |
|        |                                         | •              | 1168                                  | .80 #0. 11 F                          |                             |                              | )<br>)<br>          | 4. FE 01                                |  |
| 27.0   | 010<br>0100-0-01-5                      | NUN            | 9561-553                              | .57 10. 168                           | 8.32                        | 4.4                          | <b>ာ</b>            | 7. (1-03                                |  |
| נ<br>د | 7 - T V - 7 V                           |                | , –                                   | .22 40.20E                            | 5.52                        |                              | 308                 | 1.(6-02                                 |  |
|        | <b>,</b>                                |                | 1948                                  | .61 40.49E                            | 24.6                        |                              | )<br>)<br>(         | 3. (E - C3                              |  |
|        | • •                                     |                | 1949                                  | 324 40. 12E                           | 15.5                        | 80.3                         | )) <b>?</b>         | 2. (E-02                                |  |
|        | , v                                     |                | 1950                                  | 6.8610.66E 00                         | 3.86                        | •                            | <b>2</b> C C        | 1. (f-c2                                |  |
|        | ٠                                       |                | 1961                                  | 50                                    | 14.6                        | 35.5                         | 308                 | 5. (E-03                                |  |
|        | -                                       |                | 1952                                  | 7.1940.378 01                         | 56.6                        | ~                            | )<br>)<br>(         | 5. (E-C)                                |  |
|        | A 3-5                                   |                | 1953                                  | 6.1340,25E 01                         | 39.8                        | ÷                            | <b>3</b> 0 <b>€</b> |                                         |  |
|        | 7 ×                                     |                | 1954                                  | 8.2140.94E 00                         | 26.1                        | •                            | <b>3</b> 2 <b>2</b> | F-                                      |  |
|        | ) r                                     |                | 1955                                  | 4.5540.108.02                         | 102.                        |                              | ))Z                 | ۳.                                      |  |
|        | - •                                     |                | 1956                                  | 1.9640.06E 01                         | 6.54                        | ÷                            | <b>2</b> 00         | •                                       |  |
|        | <b>9 Q</b>                              |                | 1 957                                 | 1.31 40.07 8 01                       | 3.31                        | 41                           | )<br>)              |                                         |  |
|        | , <u>.</u>                              |                | 1958                                  | 1.55 to.07E 01                        | 17.6                        | •                            | )) <b>&gt;</b>      | ٠                                       |  |
|        | -                                       |                | 1959                                  | 3.86 10.14 01                         | 0                           | £2.3                         | )<br>)<br>(         | •                                       |  |
|        | A 4- 50                                 |                | 1960                                  | 1.25 to. 19E 01                       | 26.5                        | 34.8                         | <b>3</b> 20         | •                                       |  |
|        |                                         |                |                                       |                                       |                             |                              |                     |                                         |  |

183

| TABLE F.2 (CONTINU                     | NTINUED)    |                        | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          |                                       |             |
|----------------------------------------|-------------|------------------------|---------------------------------------|-----------------------------------------|--------------------------|---------------------------------------|-------------|
| ARC LOCATION COL                       | CULLEC 11 0 | TLE<br>ANALYSIS<br>NG. | FU-239,240<br>ACTIVITY<br>(DFP)       | UP BN TUM<br>LY ICAG<br>GR BYS 3        | Y TELC<br>(R.RE<br>WORK) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ANAL MON    |
| 1:11:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1 | ,           | C SF - 1961            | 5.8140.45£ 00                         | 1.4.7                                   | 91.0                     | 300                                   | 5. (6-62    |
|                                        |             | 1967                   | 4.1740.24E 00                         | 16.4                                    | 69.5                     | )<br>()                               | 10 - 32 - 1 |
| - •                                    |             | 1963                   | 1,00,00,06                            | 19.9                                    | 80.1                     | )) <b>?</b>                           | 1.46 00     |
|                                        |             | 1 364                  | 2.6611.775-01                         | 1.31                                    | 19.5                     | <b>3</b> 0 <b>2</b>                   | 5. 36-01    |
| ~                                      |             | 1965                   | 3.84 10.23 € 00                       | 4.20                                    | 86.6                     | 200                                   | 3. 2E-01    |
| 1 5 1 5 4                              |             | 1966                   | 8.3842.21E 00                         | 25.7                                    | 64.2                     | 100                                   | 1. {E-C1    |
| •                                      |             | 1967                   | 2.6910.358 01                         | 24.0                                    | 45.1                     | )) <b>?</b>                           | 10-36-61    |
| 9 (~                                   |             | 1968                   | 5.71+3.26E UO                         | 97.2                                    | 86.8                     | 40                                    | 6. (E-C2    |
| • «                                    |             | 1969                   | 6.6940.24E 01                         | 22.7                                    | 86.8                     | .2CC                                  | 1.16 00     |
| Φ,                                     |             | 1970                   | 1.7740.095 01                         | 36.9                                    | 64.5                     | <b>3</b> 00                           | 4. žE-CI    |
| C                                      |             | 1261                   | 1.1440.078 01                         | 16.5                                    | 83.3                     | 200                                   | 2. (E- C;   |
| ) ·                                    |             |                        |                                       |                                         | 7 67                     | 200                                   | 3 36.01     |

184
CONFIDENTIAL

New data this report.

| TAB    | LE E.S RA    | DIOCHEMICAL | , ANALYSIS OF | TABLE E.S RADIOCHEMICAL ANALYSIS OF ROLLER COASTER PHYSICAL SAMPLES, CLEAN SLATE | YSICAL SAMPLI      | S, CLEA                  | SLATE               | =         | •        |
|--------|--------------|-------------|---------------|----------------------------------------------------------------------------------|--------------------|--------------------------|---------------------|-----------|----------|
| ARC    | LOCATION     | COLLECTION  | TIN ANALYSIS  | FU-239,240<br>ACTIVITY                                                           | UPBN LUM<br>CPICRO | Y JELE<br>(R*RE<br>MORK) | COUNT               | ANAL JPON | <b>*</b> |
|        |              | ;           |               | <b>L</b> !                                                                       |                    |                          |                     |           |          |
| Ç      | 21 - 16      | 5 8 4 2     | CAC-1420      | .10 to. 17 E                                                                     |                    | 1.53                     | 36                  | 1.16      | 00       |
| J<br>P |              | 9842-1      | 205           | 9.8410.27£ 06                                                                    |                    | 94<br>0                  | 36                  |           |          |
|        | •            | )           | 2059          | .89 40.186                                                                       |                    | w                        | 3 č                 |           |          |
|        | ) <b>V</b>   | e71         | 2066          | .97 tO. 22E                                                                      |                    | 19.3                     | )?                  |           |          |
|        | <b>*</b>     | ~           | 2067          |                                                                                  |                    | 11.4                     | 7                   |           |          |
|        | • 6          | •           | 2060          | .03 40.03 8                                                                      |                    | 46.6                     | 2¢                  |           |          |
|        |              |             | ~             | .4940.16E                                                                        |                    |                          | 2                   |           |          |
|        | - 2          | 202         | ~             | . 20 €                                                                           |                    | 34.1                     | Ç,                  |           |          |
|        | 1            |             | N             | 10.22E                                                                           |                    | 32.4                     | <b>5</b> 0          |           |          |
|        | 7            |             | ~             |                                                                                  |                    | 46.6                     | <b>3</b> ¢          |           |          |
|        |              |             | ~             | .49 40.178                                                                       |                    | 16.6                     | 26                  | ,         |          |
|        | BH- C 2      | 4.C82-      | C 14-2        |                                                                                  | 9.90               | 2.8.                     | ~                   | 2. 4E     | ó        |
|        | 30-C4        | 242         | AC-1          | 1.7440.046 06                                                                    |                    | 19.E                     | <b>5</b> C          | ,         | ,        |
|        | 18-92        | 2303-4      | 12-00         | .12 tO. 19E                                                                      | 24.6               | 04.48                    | <b>3</b> 00         | 6. 3E     | ဗွ       |
| •      | 910          | 116-        | TA-21         |                                                                                  | 2.95               | S. C. S.                 | <b>)</b> 4          |           | ,        |
|        | <b>\$</b> 10 | 2286-4      | CCD-2183      | 1.2643.026 04                                                                    | 17.0               | 11.5                     | 30¢                 | 4. 2E     | Ö        |
| •      | 010          | 45          | AC-1          | .3940.08E                                                                        |                    |                          | ž                   | ,         |          |
| ,      | ***          | 2371-A      | C0-2          | .48 to. 28 E                                                                     | 52.1 •             |                          | 30                  | 1.16      | 00       |
|        | 044-3        | •<br>•<br>• | ~             | .97 +0.22E 0                                                                     | 0. 446 •           |                          | <b>&gt;</b>         | 5. (E     | ပ္ပ      |
|        | •            | •           | 2125          | .38 t0.06 E                                                                      | 1.06               |                          | 76                  | 2. EE     | ប្ដ      |
|        | •            | •           | ~             | .16 tO.06 E O                                                                    | 0.373 *            | 51.4                     | <b>3</b> 0 <b>C</b> | 2. JE     | ပ္ပ      |
|        |              | e12-1       | C 14-2197     | 1.0540.036 03                                                                    | 4.15               | 29.3                     | <u>بر</u>           |           | (        |
|        | 040          | 2370-A      | ~             | .73 to.07 £ 0                                                                    | 2.36               | <b>→</b>                 | 72                  |           | 2        |
|        | 040          | ***         | ~             | .21 10.02E 0                                                                     | 00.0               | <b>.</b>                 | 700                 | *         | 5        |
|        | 06.8         | 2369-A      | 2187          | 1104611                                                                          | A6.6               |                          | <b>~</b>            | •         |          |
|        | 068-3        |             | -             | 0                                                                                | 1.13               |                          | 2                   | 3. 15     | 9        |
|        | •            | *           | -             | -91 +0- 15-                                                                      | 2. 1c +            |                          | )<br>               | Z. 4E     | 00       |
|        | *            | <b>1</b> 0  | -21           | 4 E O                                                                            | 1.05               | <b>6</b> 1 (             | <b>≍</b> ∶          | 1. :      | 0        |
| u      | 010          | 9842        | AC-14         | 3.51 to.08 E 06                                                                  |                    | -                        | <u>ب</u>            |           |          |

| TABI | TABLE E.3 (CONTINUE | N'THUED) |          |                        | ************************************** | 1     | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              | į        |
|------|---------------------|----------|----------|------------------------|----------------------------------------|-------|-----------------------------------------|--------------|----------|
| ARC  | LOCATION            | כסרר     | A        | 9U-239,240<br>ACTIVITY | URAN 1UK<br>(FICRD                     | > ~ ) | COUNT<br>TIME                           | ANAL /MON    | _        |
| 1    | ;<br>;<br>;<br>;    |          | NO.      |                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  | K     |                                         |              | -        |
| Ų    | 040                 | 9752     | CAC-1429 | .6740.07E 0            |                                        | 46.6  | 20                                      |              |          |
| ,    | 0 0                 | •        |          | 82 to.04 E             |                                        | 11.3  |                                         | E            | 00       |
|      | 8 70                | 6111     | CDS-1173 | .36 to. 09 E O         |                                        | _     |                                         |              | 2        |
|      | 010                 |          |          | .92 to.06 E            |                                        | 0     |                                         | ₹.           | õ        |
|      | 010                 | ~        | AC-34    | .094U.16E D            | ٠,                                     | 83.3  | <b>3</b> C                              | ,            |          |
|      | 012                 | 8111     |          | 0 380.0168.            | •                                      | *     |                                         | یږ           | 0        |
|      | 4/0                 | ,        |          | .691 06E D             |                                        | 4     |                                         | <u>بر</u>    | 2        |
|      | 910                 |          | 111      | .12 to.04E 0           |                                        | S.    |                                         | . 7E         | 0        |
|      | 910                 |          | 1170     | . 79 ta. 02E 0         | . •                                    | •     |                                         | 1. ¿€ (      | 9        |
|      | 010                 |          | -        | .65 to.04E 0           |                                        | ~     |                                         | • (E         | ö        |
|      | 080                 | •        | AC-1     | .03 10.08 E 0          |                                        | ÷     |                                         |              |          |
|      | 062                 | 9111     | C05-1140 | .56 to.03E 0           |                                        | _     |                                         | . 3E         | 8        |
|      | 065                 |          | ~        | .4610.03E 0            |                                        | •     |                                         | J.           | 0        |
|      | 0.66                |          | 1182     | .30 to.03E 0           |                                        | ~     |                                         |              | 0        |
|      | 0 6 8               |          | 1103     | .11 to.02E D           |                                        | ¥     |                                         | • ?£         | 0        |
|      | 050                 |          |          | .00 to.02E 0           |                                        | 41    |                                         | . Æ          | 0        |
|      | CSC                 | ~        | AC-1     | 0 340.0114.            |                                        | 4     |                                         |              |          |
|      | C 5 3               | 9111     | 2        | .90 to .22E 0          |                                        | _     |                                         | • •E         | 0        |
|      | 150                 |          | 1186     | .38 to.22E 0           |                                        | 0     |                                         | , 1E         | Ö.       |
|      | 950                 |          | 1107     | .61 40.19 6 0          |                                        | 47    |                                         | - 56-        | <b>=</b> |
|      | 0.50                |          | 1186     | .67 to. 13E 0          |                                        | ~     |                                         | te           | 0        |
|      | 221                 |          | 1189     | .5210.126 0            |                                        | •     |                                         | ¥:           | S (      |
|      | 103                 |          | 1 90     | .02 to.12E 0           |                                        | •     |                                         | <u>.</u>     | 2        |
|      | 104                 |          | 1611     | .12 to .07 E O         |                                        | ~     |                                         | • <b>t</b> w | <u>e</u> |
|      | 106                 |          | 1 1 92   | .03 to.08 E 0.         |                                        | e,    |                                         | • IE         | 0        |
|      | 100                 |          | 1193     | 380.0119.              |                                        | ~     |                                         | • <u>:</u>   |          |
|      | 110                 |          | 1194     | .05 to.05E 0           |                                        | 0     |                                         | . JE         | 0        |
|      | 112                 |          | 1 2 9 5  | .65 10.046 0           |                                        | ~     |                                         | • (E-        | <b>=</b> |
|      | 114                 |          | 9611     | .7910.05€              |                                        | ~     |                                         | - 3:         | =        |

186

| TABL | TABLE E.3 (CONTINUED)      | NTINUED)          |                  |                        |         | ;<br>;<br>;       |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |
|------|----------------------------|-------------------|------------------|------------------------|---------|-------------------|-------------|-----------------------------------------|---|
| ARC  | LOCATION                   | TEK<br>COLLECTION | 71.W<br>AMALYSIS | FU-239,240<br>ACTIVITY | URANIUM | Y IEL C<br>I R*RE | COUNT       | ANAL MON                                |   |
| !    | 6<br>6<br>7<br>2<br>8<br>8 | NO.               | NO.              | (OPF)                  | GRAMS)  | ORK I             |             |                                         |   |
| ٥    | 666-1                      | 2228-1            | CCD- 441         | 14.                    |         | 72.5              | ပ           | 4. CE                                   |   |
| ì    | 7                          | 7                 |                  | 2041.                  |         | 66.2              | 30C         | CA 2. 5E-01                             |   |
|      | · ল                        | (F)               | 443              | .40 40.90E             |         |                   | Ų           | <b>1.</b> CE                            |   |
|      | •                          | •                 | ***              | ٠,                     |         |                   | C           | -3: •2                                  |   |
|      | 'n                         | ·w                | 4                | 00 *6 * 00 *           |         |                   | S           | E                                       |   |
|      | 010                        | 6112              | COS-1197         |                        |         | 62.3              |             | 7. SE CO                                |   |
|      | 012                        |                   | -                | .33 to.04              |         |                   |             | . ž£                                    |   |
|      | 014                        |                   | 1199             | .66 40.11              |         |                   |             | F                                       |   |
|      | 910                        |                   | 1200             | 3 40 - 13              |         |                   |             | 1. te 01                                |   |
|      | 910                        |                   | 1021             | .76 40.13              |         | r;                | 36          | 1. CE 01                                |   |
|      | 020                        |                   | 1202             | .89.00.08              |         | "                 | ¥           | <b>.</b>                                |   |
|      | 050-1                      | 3180-1            | CA0- 910         | 3.61 t0.09E 04         | 14.6    | 72.C              | 36          | 1.56 61                                 |   |
|      | ~                          |                   | 116              | .40 40.07              | 1.14    |                   | 36          | ¥.                                      |   |
|      | · M                        | m                 | 915              | .78 40. 101            | .49     | Œ,                | 100         | • <del>(</del> E-                       |   |
|      | *                          | 4                 | 913              | .95 #0.63              | .15     | •                 | )<br>)<br>( | • (E-                                   |   |
|      | w                          | 9                 | <b>\$16</b>      | .10 +2 . 20            | 0.252   | 64.E              | 100         | 2. (E-                                  |   |
|      | ~                          | ~                 | AF-              | 041.90                 | .45     |                   | <b>300</b>  | CA 3. (E-02                             |   |
|      | 022-1                      | 2227-1            | CCD- 436         | .42 10.04              |         | 9.59              | 2           | 3. 78 00                                |   |
|      | 7                          | ~                 | 437              | .92 +0-22              |         | 12.3              | 7           | 5. (E 0C                                |   |
|      | ~1                         | ~                 | 438              | .68 to .09             |         |                   | 266         | 3. (E                                   |   |
|      | #                          | *                 | 439              | .20 41.20              |         | •                 | )<br>)<br>( | CA 1. (E 00                             |   |
|      | 'n                         | *                 | CF-              | .7041.50               |         | •                 | 100         | 2. CE-                                  |   |
|      | 220                        | 8112              | CDS-1203         | 1 40.09                |         | ¥                 | <u>۲</u>    | 5. E CO                                 |   |
|      | ¥20                        |                   | 1204             | .30 10.07              |         | 76.6              | 76          | 4.40                                    |   |
|      | 030                        | 4163-A            | ~                | .39 40.11              | 0.340   | _                 | )<br>)<br>( | ¥                                       | • |
|      | 970                        | 6112              | 05-12            | . \$2 40.02            |         | ~                 | ¥           | ¥.                                      |   |
|      | 010                        |                   | 1206             | .28 to.03E             |         | 71.6              | 2           | 3. ee cc                                |   |
|      | 2:0                        |                   | 1207             | ~                      |         | 4.0.4             | 2           | E                                       |   |
|      | 032-1                      | 2232-1            | CCD- 456         | 9.67 tO. 26E 02        |         | m,                | <b>3</b> C  | W.                                      |   |

| [ABI    | ABLE E.3 (CONTINU                                                                           | NTINUED) |                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | !                        |             |             | •                 |  |
|---------|---------------------------------------------------------------------------------------------|----------|-------------------------|---------------------------------------|---------------------------------------|--------------------------|-------------|-------------|-------------------|--|
| )<br>() | LOCATION                                                                                    |          | TEN<br>ANALYSE S<br>NO. | FU-239,240<br>ACTIVITY<br>(DPM)       | URAN IUM<br>I M I CAD<br>GRAMS )      | Y JELC<br>(R#RE<br>WORK) | COUNT       | ANA         | ANAL /MON         |  |
| 1       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |          |                         |                                       |                                       | ,                        |             | ,           | ļ                 |  |
| _       | 0:2-2                                                                                       | 2-2822   | CC0- 457                | .0440.07E 0                           |                                       | £ 6 - 2                  | 200         | - 1         | , i               |  |
|         | ~                                                                                           | ~        |                         | .75 to.22E 0                          |                                       | 16.8                     | )<br>)<br>( |             | • EF              |  |
|         | *                                                                                           | •        | 459                     | .81 to.35 E O                         |                                       | 75.8                     | 300         | <u>3</u>    | . CE-01           |  |
|         | •                                                                                           | •        | F- 4                    | .10+1.10E-0                           |                                       | 75.5                     | <b>3</b> 00 |             | • (E-             |  |
|         | 024                                                                                         | 162-     | 0-21                    | .55 tO.08 E O                         | 968.0                                 | 51.6                     | 2CC         | •           | • (E-             |  |
|         | **                                                                                          | =        | 5-1                     | .55 to.19£ 0                          |                                       | 71.5                     | 36          | ~           | . JE              |  |
|         | 0.24-1                                                                                      | 2233-1   | *                       | .2440.14F                             |                                       | 62.5                     | 300         | ~           | H                 |  |
|         | 7                                                                                           |          | 46                      | .33 tO.03E 0                          |                                       | 82.5                     | 200         | <b>.</b>    | ָּהָ<br>יַּה      |  |
|         | (P)                                                                                         | m        | 4                       | .71 to.05E 0                          |                                       | 17.6                     | 4 C C       |             | F                 |  |
|         | *                                                                                           | *        | 494                     | .6440.25E 0                           |                                       | €0°€                     | 2C C        | 3           | E                 |  |
|         | **                                                                                          | <b>'</b> | - 46                    | .15 to.13E 0                          |                                       | 64.4                     | 100         | ~           | • tĒ              |  |
|         | 024-3                                                                                       | 3182-3   | CA0-2142                | .27 10.22E 0                          | 0.0122                                | 56.7                     | 2C C        | _           | - 3E •            |  |
|         | 4                                                                                           |          | ~                       | .89 to . 05 E O                       | 1.15                                  | 71.7                     | J<br>J<br>J |             | بپ                |  |
|         | •0                                                                                          | 49       | 2144                    | .55 t0.56 E-2                         | .67                                   | 66.1                     | <b>305</b>  | <b>(</b> ,  | . <del>(</del> F- |  |
|         | ^                                                                                           | ~        | 2145                    | .2540.038 0                           | 0.502                                 | e1.c                     | )<br>)<br>} | ,~          | • <del>(</del> E- |  |
|         | 036                                                                                         | 164      | 14-127                  | 4041.                                 |                                       | 5.1.v                    | 200         | _           | 1. (£ C0          |  |
|         | 036                                                                                         | 8112     | 6021-503                | .44 tO.14E 0                          |                                       | 61.3                     | 20          | 174         | . 4E              |  |
|         | 036-1                                                                                       | 4151-1   | 54-1                    | .00 t0.19 E 0                         |                                       | 66.C                     | 2CC         | ~           | • 2E-             |  |
|         | ~                                                                                           |          | 1459                    | .28 to.20E                            |                                       | 54.2                     | 2C C        |             | • ¿E-             |  |
|         | æç                                                                                          | •        | 1460                    | .7440.20E 0                           |                                       | 4.11.4                   | 3CC         | ۲<br>ح      | ¥.                |  |
|         | <b>₹</b>                                                                                    | *        | 1461                    | .6740.16E 0                           |                                       | 73.5                     | 200         |             | . 4E-             |  |
|         | ¥                                                                                           | •        | 1462                    | .07 43.                               |                                       | 83.6                     | 4           | 5           |                   |  |
|         | •                                                                                           | •        | 1462                    | .98 46.                               |                                       | 84.8                     | 200         |             | • (E-             |  |
|         | ~                                                                                           | -        | 1464                    | .0941.04E-0                           |                                       | £7.5                     | 300         | ,-          |                   |  |
|         | e)                                                                                          | •        | 1465                    | .75 14.60 E                           |                                       | £1.6                     | 7           | 5           | • (E-             |  |
|         | ው                                                                                           | 6        | 1466                    | .74 to. 37E                           |                                       | 74.7                     | 306         | _           | • (E-             |  |
|         | 2                                                                                           | 70       | 1467                    | .65 40.09                             |                                       | 72.5                     | 3CC         | 14          | 2.4E 00           |  |
|         |                                                                                             | 6112     | 2-5                     | .23 tO. 15E                           |                                       | £9.¢                     | 3.5         |             | • £               |  |
|         | 0:8-1                                                                                       | 1-1222-  | CCO- 451                | .2 ! 4                                |                                       | £0.4                     | <b>5</b>    | <b>7</b> *1 | H                 |  |

188

| TAB | TABLE E.3 (CO | (CONTENUED)    | 1                      |                                 |                                  |                             | ,                   | •          |
|-----|---------------|----------------|------------------------|---------------------------------|----------------------------------|-----------------------------|---------------------|------------|
| ARC | LOCATION      | COLLECTION NO. | TLE<br>ANALYSIS<br>NO. | FU-239,240<br>ACTIVITY<br>(05P) | UR AN TUH<br>(V TCRO<br>GR AMS ) | Y IELC<br>I R #RE<br>WORK I | COUNT               | ANAL       |
| 1   |               |                |                        | •••••••                         |                                  |                             |                     |            |
| c   | 0 - 8 - 0     | 2233-2         | CCD- 452               | 1.6540.06E 01                   |                                  | £6.8                        | ) ) <del>\</del>    | -          |
| •   | )<br>)        |                |                        | 3.70 \$0.14E 01                 |                                  | 61.3                        | 200                 | 7          |
|     | · «           | •              | 454                    | 2.80 to. 12E 01                 |                                  | 56.0                        | <b>30</b> 2         | 7.         |
|     | · 61          | . <b>16</b> 7  | CCF- 435               | 5.44 to.33E 00                  |                                  | 74.1                        | <b>30</b> 0         | .÷         |
|     | 040           | 8112           | CDS 511                | 5.65 to. 13E 05                 |                                  | £8.E                        | ۲                   | <u>۴</u>   |
|     | 040-1         | 3183-1         | CA0- 916               | 3.3140.08E 02                   |                                  | 72.4                        | <b>4</b>            | •          |
|     | ~             | ~              |                        | 2.5940.06E 01                   |                                  | 66.4                        | <b>300</b>          |            |
|     | , en          | · M            | 916                    | 1.5140.05E 01                   |                                  | 76.1                        | <b>4</b> CC         | ÷          |
|     | •             | **             | 616                    | 1.25 to. 15E 00                 |                                  | 5.8.5                       | 300                 | •          |
|     | · •0          | · •            | 920                    | 5.0041.10E-01                   |                                  | 58.5                        | <b>302</b>          | ۲<br>۲     |
|     | ~             | ~              | CAF- 921               | 4.3041.50E-01                   |                                  | 76.5                        | 2                   | _:         |
|     | 042           | 4165           | C14-1275               | 9.18 to. 20E 01                 |                                  | 13.5                        | 707                 | ÷          |
|     | 04.0          | 8112           | CD 5-1212              | 4.9140.102 05                   |                                  | 86.0                        | >                   | <b>:</b>   |
|     | 04.5          |                | 1213                   | 4.6410.138 05                   |                                  | ( )<br>( )<br>( )           | 3C                  | 2.         |
|     | 044-3         | 2230-1         | 955 -000               | 1.01 +0.03 € 03                 |                                  | 15.1                        | 2 €                 | <b>~</b>   |
|     | ~             | ~              | 447                    | 6.0440.19€ 01                   |                                  | 75.1                        | 308                 | ë.         |
|     | •             |                | 448                    | 4.27#0.28E 00                   |                                  | 75.8                        | 30 <b>č</b>         | ÷          |
|     | · •           | **             | 655                    | 7.70+1.106-01                   |                                  | 71.5                        | 200                 | <b>S</b> 2 |
|     | •             | **             | CCF- 450               | 1.60 t0.90 E-01                 |                                  | 76.C                        | <b>30</b> 2         | CA 6.      |
|     | 0.46          | 8112           | CG 5-1214              | 3.85 t0.07£ 05                  |                                  | 53.7                        | 3 C                 | æ.         |
|     | 0.48          | 4147           | C SA-1468              | 1.0710.036 02                   |                                  | 34.6                        | <b>302</b>          | C 3.       |
|     | 8 4 0         | 4134           | C 70-1279              | 1.97 to.CSE 03                  |                                  | 81.2                        | ×                   | o.         |
|     | 046           | 4166           | C 14-1276              | 9.10 10:20 E 01                 |                                  | 74.0                        | 100                 | ٠.         |
|     | 0.48          | 8112           | CDS-1215               | 3.64 t0.08E 05                  |                                  | J0.C                        | 3 C                 | ~          |
|     | 050           |                | 1216                   | 3.31 to.08 E 05                 |                                  | 4 B . E                     | ž                   | ÷          |
|     | 7,0           |                | 1217                   | 2.61 10.06E 05                  |                                  | 29.7                        | 36                  | ÷          |
|     | 052-1         | 3186-1         | CAD- 928               | 6.1340.176 01                   |                                  | 49.6                        | <b>4</b> CC         | ~          |
|     | ~             | 7              | 626                    | 3.56 to. 10£ 01                 |                                  | 16.2                        | 400                 | ٠.         |
|     | m             | •              | 930                    | 1.2710.08E 01                   |                                  | 25.4                        | <b>)</b> ) <b>†</b> | ÷          |

| TAB | TABLE E.3 (CC       | (CONTINUED)    |                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                         |                       |          |           | i |
|-----|---------------------|----------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-------------------------|-----------------------|----------|-----------|---|
| ARC | LOCATION            | COLLECTION NO. | TLW<br>ANALYSIS<br>NO.                  | FU-239,240<br>ACTIVITY<br>(DPF)         | URBNIUM<br>IPICRO<br>GRANSI          | Y JELC<br>FR*RE<br>KORK | COUNT                 | 1        | ANAL JHON | i |
| !   | 1 1 1 1 1 1 1 1 1 1 | :              | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                      | ;<br>;<br>;<br>;        | ,<br>1<br>1<br>1<br>1 |          |           | i |
| c   | 4-6-0               | 3186-4         | CAD- 931                                | .10 40.                                 |                                      | 72.8                    | 909                   | -        |           |   |
| •   | 4                   |                | <b>.</b>                                | 94 #0. 14E                              |                                      | 82.7                    | 223                   | -        | Ĥ,        |   |
|     | <b>-</b>            | , ~            | CAF- 933                                | 70 +0. BOE                              |                                      | 0                       | 400                   | 7        | Œ,        |   |
|     | 750                 |                | 7                                       | 34 10.                                  |                                      | 43                      | 100                   | •        |           |   |
|     | 4 4 0               | 8112           | C15-1218                                | .48 #0.06E 0                            |                                      | 60.2                    | 36                    |          |           |   |
|     | 7 4                 | 1110           |                                         | .4940.05E 0                             |                                      | ~                       | 3 C                   | • •      |           |   |
|     | 1 - 9 - 0           | 2238-1         | CCD- 486                                | .76 to.07E                              |                                      | 67.8                    | 2                     | •        | 3.3£ 01   |   |
|     | • ^                 |                | <b>}</b>                                | .70 #0.04E 0                            |                                      | 64.9                    | 20C                   | .,       |           |   |
|     |                     | 4 (**          | 4.88                                    | 98 40 - 19 6 0                          |                                      | 41.4                    | 300                   | •        | 3E        |   |
|     | ۱ ،                 | 1 -            | 489                                     | .62 t0 . 13E                            |                                      | 61.5                    | 30Z                   |          |           |   |
|     | ישי                 | • 447          | CCF - 490                               | 1.41 to.11E 00                          |                                      | 75.4                    | 3 3 <b>4</b> C C      | 5        | 1         |   |
|     | ,<br>89<br>69       | 112            |                                         | .29 to.06 E                             | •                                    | S                       | 36                    | •        | Ä         |   |
|     | 0.50                | 3185-1         | A50-                                    | .32 40.06E 0                            |                                      | ~                       | 7                     |          |           |   |
|     | ~                   |                |                                         | .51 40.22E 0                            |                                      | ~                       | 100                   |          | بڻ        |   |
|     | 1 ~~                | 1 (17)         | 924                                     | .2740.04E 0                             |                                      | Y                       | 400                   | •        |           |   |
|     | •                   | •              | 925                                     | .75 t0.06E                              |                                      |                         | 40C                   |          | ш         |   |
|     | • •                 | . 43           | 926                                     | .7640.26E D                             |                                      | æ                       | 2CC                   |          | •         |   |
|     | , ~                 | . ~            |                                         | .46 #0.18 E O                           |                                      | 81.6                    | 20C                   | •        |           |   |
|     | . 070               | 9              | C TA-1278                               | .70 to. 70 E-0                          |                                      |                         | 304                   |          |           |   |
|     | 0.66-1              | 2239-1         |                                         | 4.00 to. 70 E-01                        |                                      | •                       | 300                   | 5        | 1. CE-C!  |   |
|     | ~                   | )<br>)         | 4                                       | .60 to. 90 E-0                          |                                      | •                       | 300                   | చ        | 1. E-C1   |   |
|     | ) <b>(</b> **       | •              | ு                                       | .7041.10E-0                             |                                      | •                       | 300                   | 3        |           |   |
|     | •                   | •              | 464                                     | .00 55.                                 |                                      |                         | 400                   | 3        | 7. (E-02  |   |
|     | • •                 | · •••          | CF- 4                                   | .00 #5.00 E-0                           |                                      |                         | 400                   | 5        | 1. (E 00  |   |
|     | 017                 | 6112           | •                                       | .90 10.05E 0                            |                                      | •                       | <b>3</b>              | •        | 1. (E 00  |   |
|     | 042-1               | 2234-1         | <b>♦</b> -03                            | .3010c 70 E-0                           |                                      | •                       | 30C                   | Š        | 1. (E 00  |   |
|     | ~                   | ~              | ,                                       | 00 *6 * 00                              |                                      | £ € • 3                 | 30C                   | 3        | 10-33.1   |   |
|     | · ***               | m              | 468                                     | .00 18.                                 |                                      | ٠                       | <b>308</b>            | 3        | 00 3) 1   |   |
|     | ) <b>~</b>          | •              | 469                                     | .3910.16E O                             |                                      | £ . £ 4                 | <b>3</b> 00           | <b>5</b> | . G CO    |   |

| TABL | E E.3        | (TINUED)          |                 |                        | ************************************** |                      | 1               |   | •             |     |
|------|--------------|-------------------|-----------------|------------------------|----------------------------------------|----------------------|-----------------|---|---------------|-----|
|      | ARC LOCATION | TEN<br>COLLECTION | TLW<br>AMALYSIS | PU-239,240<br>ACTIVITY | URAN IUM<br>( M I CRO                  | Y TEL C<br>I R * R E | COUNT           |   | AHAL MON      | ž   |
|      |              | NO.               | NO.             | (0.6.1)                | CR AMS 1                               | WORK )               | !               | • | !<br>!        | ;   |
| ۵    | 062-5        | *0                | CCF- 470        | 2.6040.70E-01          |                                        | 83.2                 | 308             | 3 | 1. (E-        | 5   |
|      | 064          |                   | CDS-1222        | 1.85 to.04E 05         |                                        | 71.6                 | 30              |   | 1.16          | S   |
|      | 1-570        | _                 | CAD- 934        | 2.48 tO. 10 E O1       |                                        | 19.6                 | 300             |   | 6. 2E         | 00  |
|      | 7            | 7                 | 938             | 1.10 +2.10 E-01        |                                        | 66.9                 | پ<br>چ          | చ | 1. CE         | 00  |
|      | m            | m                 | 936             | 1.20 +1.20 E-01        |                                        | 20.0                 | )<br>†          | 3 | 1. CF         | 00  |
|      | 4            | •                 | 937             | 1.50#1.50E-01          |                                        |                      | 7               | 5 | 1. (E         | 0   |
|      | ÷            | <b>.</b>          | 938             | 4.89#0.23E 00          |                                        | 41.5                 | )<br>(1)<br>(2) |   | 4. SE         | 8   |
|      | -            |                   | CAF- 939        | 9.00 #5.00 E-02        |                                        | 77.0                 | 300             |   | 1. (E         | 8   |
|      | 970          | 158               | TA-1            | 1.21 to.13E 00         |                                        | 75.4                 | 200             |   | 3. CE-        | 5   |
|      | 066-A        | 8112              | COS-1223        | 1.51 #0.03E 05         |                                        | 3.0€                 | ),<br>,         |   | 2. 1E         | 00  |
|      | €0           |                   | ~               | 1.5840.036 05          |                                        | 68.1                 | 3C              |   | 2. (E         | 00  |
|      | 0 6 8        |                   | 1225            | 1.53 #0.05E 05         |                                        | 3.8.4                | 36              |   | 1. EE         | 00  |
|      | 068-1        | 2237-1            | CCO- 481        | 3.22 t0.70 £-01        |                                        | 41.4                 | 300             | 3 | 1. CE         | 00  |
|      | ~            | 7                 | 482             | 00 41 . 00 E-0         |                                        | 63.E                 | <b>3</b> CC     | 3 | ا.<br>ش       | Ö   |
|      | m            |                   | 483             | 0                      |                                        | 45.C                 | 1CCC            |   | 3. (E         | 00  |
|      | •            | •                 | +8+             |                        |                                        | 45.8                 | <b>3</b> ℃      | 5 | 1. (E         | 00  |
|      | · w          |                   | CCF- 485        | 9                      |                                        | 72.0                 | <b>30</b> 0     | 3 | 1.66-         | ~   |
|      | 070          | 8112              | COS-1226        | 1.4840.036 05          |                                        | J- 8-9               | 3.C             |   | 1 · EE        | ပ္ပ |
|      | 012          |                   | 1221            | 0                      |                                        | 62.8                 | 7               |   | 1.36          | 8   |
|      | 920          |                   | E 10-1280       | 2.19 t0.05E 03         |                                        | 81.9                 | <b>5</b> C      |   | 1. EE         | 8   |
|      | 074          | ~                 | CDS-1228        | .5240.03E 0            |                                        | 62.4                 | ×               |   | <b>l</b> . 1E | 8   |
|      | 1-410        | 2-1               | 114 -022        | 0                      |                                        | 62.3                 | 36              |   | 2. SE         | ္ပ  |
|      | ~            | ~                 | 472             | е<br>О                 |                                        | 65.5                 | 2               |   | 2. i£         | 8   |
|      | M            | •                 | 473             | 10.04E 0               |                                        | 70.5                 | <b>308</b>      |   | 33 . 2        | 8   |
|      | •            | •                 | +14             | 2.0040.086 01          |                                        | 72.5                 | 3CC             |   | J. 7E         | 00  |
|      | ĸ            |                   |                 | 10.05E 0               |                                        | 91.5                 | )<br>)<br>(     |   | 2.(6-         | 5   |
|      | 076-A        | 8112              | COS-1229        | 10.04E 0               |                                        | 10.5                 | <b>3</b> C      |   | 1 · 1E        | 10  |
|      | €3           |                   | 1230            | 44 10.04E              |                                        | 30.0                 | 30              |   | 1. IE         | 8   |
|      | 0 7 8        | 4162              | C 1A-1273       | 2                      | 56.9                                   | £7.8                 | <b>3</b> 6      |   | 6. (E-        | ត   |

191

| TABI | ABLE E.3 (CONTIN                        | NTINUED)                                |                        |                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1                                       |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |    |
|------|-----------------------------------------|-----------------------------------------|------------------------|---------------------------------|--------------------------------------|-----------------------------------------|---------------|-----------------------------------------|----|
| ARC  | LOCATION                                | COLLEC FION                             | TLW<br>ANALYSIS<br>NO. | PU-239,240<br>ACTIVITY<br>(DFF) | URAN IUM<br>(FICRO<br>GRAPS)         | Y 1EL C<br>I R *R E<br>WORK )           | C0041<br>114E | ANAL JHON                               |    |
|      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                        | ***                             | •                                    | • • • • • • • • • • • • • • • • • • • • | <br>          | <br>                                    | :  |
| ٥    | 9.0                                     | 8112                                    | C05-1231               | .27 #0.03E 0                    |                                      | v                                       | <b>3</b> C    | 4E 0                                    | 0  |
| ,    | ٠.                                      |                                         | 12                     | .2440.02E 0                     |                                      | ¥                                       |               | 0                                       | O  |
|      | ) Œ                                     |                                         | . ~                    | .2740.03E 0                     |                                      | -                                       |               | 7E<br>C                                 | ں  |
|      | 066                                     |                                         | 1234                   | F 0                             |                                      | š                                       |               | 7E O                                    | 0  |
|      | 6                                       | 2236-1                                  | · •                    | .4440.11E 0                     |                                      | <b>:</b>                                |               | 0                                       | o  |
|      | ,                                       |                                         | 4                      | .5040.21E 0                     |                                      |                                         | ~             | 3E C                                    | ပ  |
|      | יח ו                                    |                                         | 478                    | .21 40.03E 0                    |                                      | ;                                       | J             | U                                       | ပ  |
|      | ۱ 🐗                                     | · •                                     | 419                    | .76 40.20E 0                    |                                      | 2                                       |               | 4E 0                                    | _  |
|      | r <b>4</b> 7                            | • ••                                    | CF - 4                 | .18 40.06 0                     |                                      | £.                                      | S             | (£-0                                    | _  |
|      | 23                                      |                                         | CDS-1236               | .00 #0.18E 0                    |                                      | 11.1                                    |               | . SE C                                  | Ç  |
|      | · v                                     |                                         | 12                     | .49 to.17E U                    |                                      | æ                                       |               | U                                       | ပ  |
|      | · v                                     |                                         | C                      | .91 to.15E 0                    |                                      | ç                                       |               | . M. C                                  | a  |
|      | · v                                     |                                         | ~                      | .54 10.10E 0                    |                                      | 41                                      |               | <u>ب</u>                                | 0  |
|      | ٠.                                      |                                         | ~                      | .5740.12E 0                     |                                      | ¥                                       |               | Ç                                       | U  |
|      | , <b>U</b>                              |                                         | ~                      | .17 to.12E 0                    |                                      | æ                                       |               | بي                                      | J  |
|      | ·                                       | •                                       | ~                      | .62 to.09 E O                   |                                      | 41.6                                    |               | 1E 0                                    | 0  |
|      |                                         |                                         |                        | .11 to.07 E 0                   |                                      | ~                                       |               | . 2E O                                  | 0  |
|      | 108                                     |                                         | 1244                   | .7040.066 0                     |                                      |                                         |               | Q                                       | 0  |
|      | · –                                     | -                                       | ~                      | .61 #0.07E 0                    |                                      | 4                                       |               | ¥                                       | 0  |
|      | -                                       |                                         | ď                      | .33 #0.06E 0                    |                                      | 7                                       |               | 0                                       | 0  |
|      | -                                       | 5                                       | 10-12                  | .93 to.11E 0                    | 20.1                                 | ~                                       |               | 6-0                                     | _  |
|      | -                                       | 1                                       | N                      | .91 t0.04£ 0                    |                                      | ው                                       |               | 3 - 3E •                                |    |
| 4    | -                                       | 0113                                    | 12                     | .23 #0.11E 0                    |                                      |                                         |               | U                                       | 0  |
| ,    | -                                       | :<br>                                   | ~                      | .85 t0.07E 0                    |                                      | ~                                       |               | . 3E 0                                  | 0  |
|      | -                                       |                                         | ~                      | .82 t0.09 E 0                   |                                      |                                         |               | . TE 0                                  | 0  |
|      | ~                                       |                                         | ~                      | .40 40.148 0                    |                                      | •                                       |               | . EE O                                  | _  |
|      | 17                                      |                                         | ~                      | .35 t0.09E 0                    |                                      | Ġ                                       |               | 3.2E C                                  | o. |
|      | 026                                     |                                         | 1253                   | 43 40.06                        |                                      | _                                       | ×             | . 46.0                                  | 0  |
|      | 020                                     |                                         | ~                      | .28 t0.03E 0                    |                                      | 13.8                                    |               | 5. (6 0                                 | 0  |

192

| TAB | TABLE E.3 (CONTINUED) | NTINUED)   | 1            |                        | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | i<br>1<br>1<br>1 |                     | 1              |
|-----|-----------------------|------------|--------------|------------------------|-----------------------------------------|------------------|---------------------|----------------|
| ARC | LOCATION              | COLLECTION | TL WANALYSIS | FU-239,240<br>ACTIVITY | UR AN JUM                               | Y IELC<br>I R*RE | COUNT<br>TIME       | ANAL THON      |
| !   |                       | *0N:       | NO.          | (08%)                  | GRAMS )                                 | ORK<br>I         |                     |                |
| u   | 0.0                   | 2113       | <b>LO</b>    | .21 40.14E 0           |                                         | •                | 36                  | . 1E 0         |
| ,   | 0.22                  | •          | 1256         | 5.78 t0.13E 05         |                                         | 14.1             | <b>5</b> C          | 2.26 00        |
|     | 024                   |            | 25           | .44 #0.10E 0           |                                         | •                | <b>5</b> 2          | • <b>6</b> E 0 |
|     | 0.26-A                |            | 25           | .81 #0.08E 0           |                                         | •                | ),<br>(             | . 4E C         |
|     | <b>6</b> 2            |            | 25           | .6740.078 0            |                                         | •                | <b>9</b>            | • 4E 0         |
|     | 0.28                  |            | 26           | .40 #0.06E D           |                                         | ٠                | O<br>61             | 35.0           |
|     | 044-1                 | 9640-1     | 23           | .46 tO. 14E 0          | .87                                     | ٠                | <b>5</b> C          |                |
|     | ~                     |            | 223          | .92 t0.05E 0           | 0.161                                   | ٠                | 3CC                 | ပ<br>မ         |
|     | 141                   | •          | 23           | .91 *0.22E 0           | • 10                                    | •                | <b>5</b> CC         |                |
|     | •                     | •          | ~            | .46 tO. 10E 0          |                                         | ٠                | <b>5</b> 0 <b>C</b> | . SE 0         |
|     | · <b>4</b> 0          | ι.         | 23           | .42 40.22E U           | .24                                     | •                | BCC                 | . 4E O         |
|     | 044-1                 | 9641-1     | 23           | .16 40.12 €            | 6.02                                    | •                | 101;                | . žE C         |
|     | ~                     |            | 23           | .72 #0.11E 0           | -13                                     | ٠                | )) <b>?</b>         | ۳,             |
|     | , eri                 | m          | 23           | .38 t0.07E             | 0.0550.0                                |                  | 1000                | , 4E 0         |
|     | *                     | •          | 23           | .51 to.06E 0           | (3                                      | •                | 1000                | . £E-0         |
|     | · 67                  | 'n         | 23           | .65 #0.13 E 0          | 50.2                                    | 75.6             | 1000                | • <b>E</b> -C  |
|     | C48-1                 | 9638-1     | 22           | .37 to. 12E 0          |                                         | •                | <b>300</b>          |                |
|     | ~                     | 7          | 22           | .05 tO.01 E O          | •                                       | ~                | 20C                 |                |
|     | (P)                   | 6          | 22           | .8340.026              | 6                                       | Š                | 100                 | 1. EE 00       |
|     | •                     | •          | 22           | .66 40.06E 0           | 0                                       | ÷                | 10CC                | •              |
|     | **                    | 87         | 22           | .41 t0.03E 0           | -15                                     | ÷.               | 1000                | - 4E-          |
|     | 048-1                 | 1-6696     | 22           | .49 to. 11E            | 0.335 •                                 |                  | <b>5</b>            |                |
|     | ~                     | ~          | 22           | .11 to.03E 0           | .21                                     | ÷                | ت<br>م              | 1              |
|     | <b>m</b>              | •          | 22           | .84 #0.05E 0           | .62                                     | φ.               | U                   | . ff.          |
|     | •                     | •          | 22           | .56 t0.15E 0           | •                                       | ċ                | 302                 | 9              |
|     | 'n                    | *          | 222          | .43 t0.30 E 0          | 2.                                      | ċ                | 0                   | • (E-0         |
| Ŀ   | 920                   | 8119       | ~            | .59 10.11 8            |                                         | 0.00             | 2                   | 1. 26 00       |
|     | 1-920                 | 2173-1     | CO-157       | .16 t0.03E 0           |                                         |                  | <b>3</b> C          |                |
|     | 7                     | 7          | 5            | .14,10.                |                                         |                  | <b>y</b>            | •              |

NEW DATA THIS REPORT

|       | 1,4               | FU-239,240        | UPANIUM | YIELD          | COULT        | ANAL MON       |
|-------|-------------------|-------------------|---------|----------------|--------------|----------------|
|       | N ANALYSIS<br>NO. | ACT1V!TY<br>(0PP) | CP ICRO | (R*RE<br>MORK) | TIME         |                |
| ,     |                   |                   |         |                | ,,,,         | ,              |
| 113-3 | 6/67-077          | 317 · 0 · 41 ·    |         |                | 77           | ָי יָנ         |
| Λ.    | 1580              | .2940.05E         |         | 711.6          | 30 <b>2</b>  | ¥              |
| 5     | CCF-1581          | .56 #1.00E        |         | 70°C           | <b>3</b> 00  | 1. (E-C2       |
| 642   | CAC-1423          | .61 tO.06E        |         | 16.8           | 36           |                |
| 9119  | 1921-503          | .1646.068         |         | 14.1           | 3.5          |                |
|       | 1762              | .34 40.03E        | ٠.      | 71.3           | 100          | 1.36 03        |
|       | 1763              | .0240.12F         | •       | 75.3           | <b>5</b>     |                |
|       | 1764              | .03 10.03E        |         | 65.2           | <b>3</b> C   | . 1E           |
|       | 1762              | .1740.03E         |         | 8.58           | <b>5</b>     |                |
|       | 1766              | .92 to . 09 E     |         | 63.2           | 3 C          | 3; t           |
| 646   | CAC-1424          | 8.50 tO. 18 E 06  |         | 76.2           | <b>3</b> 2   |                |
| 6119  | COS-1767          | .76 40.05 €       |         | 71.6           | 4            | -3             |
|       | 1768              | .18 #0.05 E       |         | £8.3           | <b>3</b> C   | £              |
|       | 1769              | .75 to. 16E       |         | £6.2           | 36           | 1.76 00        |
|       | 1770              | 32 tO. 18E        |         | 11.1           | <b>3</b> C   | É.             |
| 9646  | CAC-1425          | .54 to.03E        |         | 19.3           | <b>3</b> C   |                |
| 1119  | CD S-1771         | 301.0496.         |         | 62.3           | 36           | 9. ce - cl     |
|       | 1112              | .0340.11E         |         | 20.5           | 300          |                |
|       | 1773              | .50 tc. 06 E      |         | 59.5           | 3 C          | j.             |
| 1646  | (ディー1426          | .01 40.02 €       |         | 17.3           | 26           |                |
| 6119  | COS-1774          | 360.C146.         |         | 48.7           | <b>3</b> CC  | 2. SE C2       |
|       | 1775              | .38 50.07E        |         | 51.4           | 200          | ZE-            |
| 942   | CAC-1427          | .76 tO.13E        |         | 76.3           | <b>5</b> C   |                |
|       | ~                 | .37 40.08 8       |         | 66.7           | 26           |                |
| 1-952 | CC0-1597          | .5340.126         |         | 100            | <b>∪</b>     | <b>.</b>       |
| ~     | 1598              | .38 tO.06 E       |         | 63.3           | 3 C C        | 3. 'E 60       |
| m     | 1599              | .44 10.07E        |         | 24.1           | )<br>()      | <del>.</del> 6 |
| •     | 1600              | .02 #0.03E        |         | 58.3           | ) ) <b>?</b> | . te           |
| •     | CCF-1601          | .20 to . 16 E     |         | 50 · F         | 200          | - 35 -         |

194

| TABI     | TABLE E.3 (CONTINUED) | N'ITNUED)         |                 |                        |                    |                 | 1             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|----------|-----------------------|-------------------|-----------------|------------------------|--------------------|-----------------|---------------|-----------------------------------------|
| ARC      | ARC LOCATION          | TLW<br>COLLECTION | TLW<br>ANALYSIS | PU-239,240<br>ACTIVITY | URAN JUM<br>(FICRO | Y IELC<br>(R*RE | COUNT<br>TIME | ANAL /HOH                               |
| 1        | 1 1 1 1               | •0N               | NO.             | (DFP)                  | CK AMS 1           | Z               | 1             |                                         |
| 7        | 022-1                 | 2205-1            | CCD-1587        | 1.08 #0.04E 01         |                    | 83.6            | 200           |                                         |
|          | ~                     |                   | 1588            | 1.88 to.07E 01         |                    | 62.4            | <b>30</b> 0   | ÷.                                      |
|          | 1 (47)                | · (4)             | 1589            | .20 #0                 |                    | 81.5            | 20C           |                                         |
|          | •                     | •                 | 1590            | .0041.75E              |                    | 47.2            | <b>500</b>    | <del>-</del> 9) •                       |
|          | - 50                  | · w               | 7               | .43 #2.66E-0           |                    | œ               | ¥             | E                                       |
|          | 0.26                  |                   | -               | .46 #0.08E 0           |                    |                 | <b>308</b>    | . žž.                                   |
|          | 054-1                 | 22C1-1            | CCD-1582        | .26 10.06 E D          |                    | 72.1            | <b>4</b>      |                                         |
|          | ~                     |                   |                 | .89 #0.09 E O          |                    | Ð               | 20C           | . 46                                    |
|          | · ~                   | m                 | 1584            | .80 #0.29E 0           |                    | •               | 30Z           | • <del>[</del> E                        |
|          | •                     | •                 | 1585            |                        |                    | 0               | 30 <b>C</b>   | 1.(6 00                                 |
|          | •                     | ·w                | 7               | .71 #1.20 E-0          |                    | _               | 30C           | • (E-                                   |
| ل.       | 045                   |                   | C TA-1665       | .68 #0, 17E 0          |                    | 71.5            | <b>4</b>      | 4.18-                                   |
| <b>;</b> | 0.48                  | 4017              | _               | .81 t0.20E 0           |                    | ÷               | ű             |                                         |
|          | 0.60-1                | 2222-1            | CC0-1592        | .03 10.126 0           |                    | ¥               | <b>3</b> C    | <u>1</u> E                              |
|          | ~                     | -                 | 1593            | .05 t0.19E 0           |                    | 4.69            | 20C           | æ                                       |
|          | m                     | •                 | 1594            | .02 t0.18E 0           |                    | 44              | <b>5</b> 00   |                                         |
|          | 4                     | •                 | 1595            | .01 #0.04E 0           |                    | .57             | 400           | Ť                                       |
|          | ĸ                     | *                 | 7               | .81 +0.09 € 0          |                    | _               | <b>30</b> 2   | Ť                                       |
| BAL      | L 1,P17               | 4C22-A            | C TA-2192       | .20 44.65 6-0          | 0.593              | 45.7            | 40            | 6. 26-                                  |
|          | L 2, P 5-1            | 2310-1            |                 | .00 43.00 E-0          |                    | 4.19            | 300           | J. CE                                   |
|          | ~                     | 7                 | 245             | .80 +1. 20 E-U         |                    | 47.8            | 30¢           | . Œ                                     |
|          | ~                     | •                 | 543             | .88 tO.24E 0           |                    | 13.61           | 306           | • (E                                    |
|          | •                     | 4                 | 544             | .40 t0.90E-0           |                    | 41.3            | 306           | 7.<br>E                                 |
|          | *                     | · Kn              | CCF- 545        | .80 #1.00 E-0          |                    | 49.0            | )<br>32       | 2. (E-                                  |
|          | L 2, P13-1            | 2314-1            |                 | .48 t0.01E 0           | 2.63               | 71.6            | <u>۲</u>      | ų                                       |
|          | 7                     | ~                 | 547             | .3140.02E              |                    | _               | 36            | <b>.</b>                                |
|          | •                     | m                 | 548             | .1210.076 0            | 2.64               | 13.1            | Ç             | <b>.</b>                                |
|          | •                     | **                | 549             | .29 to.08 E            |                    | œ               | <b>1</b> 00   |                                         |
|          | <b>5</b>              | *                 | CCF- 550        | 2.8810.116 01          |                    | 69.3            | <b>3</b> 00   | 1.16 00                                 |

| TAB. | TABLE E.3 (CONTINUED) | TINUED)                  |                                                                                             |                                         |                             |                          |               |        |           | :   |
|------|-----------------------|--------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|--------------------------|---------------|--------|-----------|-----|
| ARC  | ARC LOCATION          | TLW<br>COLLECTION<br>NO. | TLW<br>ANALYSIS<br>NO.                                                                      | FU-239,240<br>ACTIVITY<br>(DFM)         | URANIUM<br>(FICRO<br>GRANS) | Y IELC<br>(R#RE<br>WORK) | COUNT<br>TIME | X<br>X | ANAL JHON | -   |
| !    |                       |                          | ;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | * * * * * * * * * * * * * * * * * * * * |                             |                          |               |        |           | )   |
| BAL  | 13.09                 | 2312-A                   | CCD-2185                                                                                    | 4.24 to.09 E 03                         | .55                         | 74.3                     | <u>ح</u> د    |        |           |     |
| 1    | 1 2, 9 9-3            |                          | 2115                                                                                        | 3.01 to.10E 02                          | •                           | 19.8                     | 3 C           |        | 8. 16-(   | 5   |
|      | •                     | 4                        | 2116                                                                                        | 3.09 to.11 6 01                         | 0.841                       | 19.6                     | זכנ           |        | 1. (6-)   | 6   |
|      | · <b>4</b> 7          | · 10                     | CF.                                                                                         | 1.3940.046 02                           | •                           | 12.1                     | <b>30</b> 0   |        | 1.46      | 8   |
|      | 13,917-1              | 2307-1                   | CC0- 531                                                                                    | 7.50 #1.10 E-01                         |                             | ₹8.€                     | 40C           |        | 1. CE .   | 00  |
|      | 2                     |                          |                                                                                             | 3.00 #5.00 E-02                         |                             | C: **                    | 400           |        | 1. CE-    | 20  |
|      |                       | •                        | 533                                                                                         | 4.70 t0.90 E-01                         |                             | 42.1                     | 400           |        | 1.66      | 8   |
|      | · •                   | •                        | 534                                                                                         | 2.48 #0.23 € 03                         |                             | 39.4                     | 400           | 5      | 2. (E     | 00  |
|      | · 10                  |                          | GF.                                                                                         | 1.9011.106-01                           |                             | 44.C                     |               |        | 5. (6-    | 02  |
|      | 1 2, 9 22             | 318                      | CBS-1456                                                                                    | 5.63 #0.12E 03                          |                             | 88.6                     |               |        | . ië      | ဝ္ပ |
|      | 6 d • 5 -             | 5317                     |                                                                                             | 2.52 to .05 E 04                        |                             | 83.2                     |               |        | 1. EE     | 00  |
|      | L 4, P 21             | 4C24-A                   | C 1A-2193                                                                                   | 7.76 t0.23E 02                          | * 09L ' 0                   | 55.4                     | 36            |        |           |     |
|      | 1 4, P 22             | 317                      | 8 S-1                                                                                       | .12 t0.04E                              |                             | 81.9                     |               |        | 3.46      | 0   |
|      | [ 5, P l- 1           | 2322-1                   | CCD- 561                                                                                    | .12 t0.05E                              |                             | 67.1                     | 1000          |        | 3.56      | 8   |
|      |                       |                          |                                                                                             | 391.016€                                |                             | 1:51                     | 308           |        | 1.46      | ပ္ပ |
|      | . ~                   |                          | 563                                                                                         | .52 #0.41E                              |                             | €0.€                     | 308           | 3      |           | 00  |
|      |                       | •                        | 564                                                                                         | .17 to. 11E                             |                             | 19.6                     |               |        |           | 00  |
|      | * 417                 | •                        |                                                                                             |                                         |                             | 74.2                     | 100           |        | J . 4E    | 00  |
|      | 16.911                | 5316                     | CBS-1557                                                                                    | .63 t0.06 E                             |                             | 78.3                     | 3 C           |        |           | ပ္ပ |
|      | 9                     | •                        | -                                                                                           | .06 to. 11 E                            |                             | 71.0                     |               |        | Ψ̈        | 0   |
|      | (6, 911               | 5315                     | 1450                                                                                        | .89 10.04E                              |                             | 19.8                     | <b>5</b> C    |        |           | 00  |
|      | 4                     |                          | 1451                                                                                        | .66 40.08 E                             |                             | 85.2                     | ۶<br>د        |        |           | ၀   |
|      | ( 6, P.13-1           | 2308-1                   | CCD- 536                                                                                    | .07 t0.21E                              |                             | 81.2                     | 36            |        | 5. IE     | 00  |
|      |                       | ,<br>!<br>!              |                                                                                             | .76 to. 28 E                            |                             | 76.2                     | 100           |        |           | 8   |
|      | 9 647                 | , m                      | 538                                                                                         | .2010.136                               |                             | 65.3                     | <b>3</b> 00   |        |           | 00  |
|      | •                     | 4                        | 539                                                                                         | .44 10. 16E                             |                             | 14.3                     | 306           | చ      |           | 5   |
|      | * 67                  | •                        | ,                                                                                           | .58 10.30€                              |                             | 71.4                     | )<br>)<br>(   |        | 1.66      | 8   |
|      | L 6, P 21-1           | 2321-1                   | 955 -022                                                                                    | .85 to.05 E                             |                             | 11.1                     | <b>&gt;</b>   |        |           | 8   |
|      |                       | 7                        |                                                                                             | 2.7310.096 02                           |                             | 72.4                     | <b>3</b> C    |        |           | 00  |
|      |                       |                          |                                                                                             |                                         |                             |                          |               |        |           |     |

\*New Data this report

| TAB | TABLE E.3 (CONTINUED)                   | (TINUED)                    |                        |                                 |                               |                           |               |             |  |
|-----|-----------------------------------------|-----------------------------|------------------------|---------------------------------|-------------------------------|---------------------------|---------------|-------------|--|
| ARC | ARC LOCATION 11<br>COLLEC               | 11 M<br>COLLEC 71 ON<br>NO. | TLE<br>ANALYSIS<br>NG. | FU-239,240<br>ACTIVITY<br>(0FM) | UP AN JUH<br>(FICRO<br>GRAMS) | Y IELC<br>IR=RE<br>WORK I | COUNT<br>TIME | ANAL JHON   |  |
|     | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                             | ,                      |                                 |                               |                           |               |             |  |
| 6 J | L 6, P 21-3                             | 2321-3                      | CCD- 558               | 8.89 to. 30 E 01                |                               | £ 5 . £                   | ر<br>اد       | ָ<br>נו     |  |
|     | •                                       | 4                           | 559                    | .14 40.28E                      |                               | 71.5                      | 100           | . 2E        |  |
|     | 41                                      | S                           | CCF- 560               | .9940.19E                       |                               | 62.4                      | 400           | CA 3.(E 00  |  |
|     | 17.09                                   | 4C11-A                      | -21                    | 342.0101.                       | 1.16                          | 42.1                      | 100           | • 1E        |  |
|     | 17,917                                  | 4010                        |                        | 0.00 to.04E 00                  |                               | 72.4                      | 400           | 1.(E 00     |  |
|     | L E, P 13-1                             | 2343-1                      | 119 -000               | .02 #0.02E                      |                               | 10.1                      | 400           | 2.58 01     |  |
|     | 7                                       | ~                           |                        | .57 40.28E                      |                               | \$9.C                     | 704           | 1.46 00     |  |
|     |                                         | · (1)                       | 613                    | .76 t0.14E                      |                               |                           | 400           | 4. CE - C1  |  |
|     | **                                      | 4                           | <b>519</b>             | ٠,٠                             |                               | 81.0                      | )<br>[]       | CA 1. (E 00 |  |
|     | S                                       | r.                          |                        | 2.1041.40F-01                   |                               | 57.1                      | 100           | 1. CE       |  |
|     | L E, P 21-1                             | 2336-1                      | 265 -022               | .20 #0.15E                      |                               | 67.1                      | 3CC           | CA 1.CE 00  |  |
|     | 7                                       | 7                           | 597                    | 8.59 to.30 E 00                 |                               | 44.0                      | <b>3</b> 26   | <b>8. £</b> |  |
|     | E                                       | m                           | 965                    | •                               |                               | 56.8                      | 3CC           | 1.06        |  |
|     | •                                       | ∢*                          | 599                    | .00 +8 .00                      |                               | 83.6                      | 36            | CA 1. (E-02 |  |
|     | 'n                                      | W)                          | CF-                    | 5.00 49.00 E-02                 |                               | 66.5                      | <b>)</b> 5    | 1. (E-      |  |
|     | 1-60'57                                 | 2339-1                      | 909 -000               | 2.0044.00£-02                   |                               | £1.2                      | )<br>)<br>(   | 1. (E 00    |  |
|     | 7                                       | લ્ય                         | 209                    | 1.30 +1.90 E-01                 |                               | 41.2                      | 100           | 1. CE 00    |  |
|     | ~                                       | n                           | 809                    | 1.60:1.20 6-01                  |                               | 66.5                      | 100           | 1.CE 00     |  |
|     | 4                                       | 4                           | 609                    | 0.00 to.06 50                   |                               | 61.5                      | 100           | 1. (E JO    |  |
|     | 'n                                      | S                           | CCF- 610               | 2.3010.806-01                   |                               | 67.6                      | 100           | CA 5. (E-C2 |  |
|     | 1-5,917-1                               | 2338-1                      | ,                      | -0.4041.20E-01                  |                               | 80.4                      | <u>و</u>      | 1.(6-       |  |
|     | 2                                       | _                           | 209                    | 0.00 #0.09 E 00                 |                               | 67.7                      | <b>J</b> 6    | 1. (E-      |  |
|     | m                                       | ~                           | 603                    | 1.20 to.70E-01                  |                               | 19.5                      | 3CC           | 3. CE-      |  |
|     | 4                                       | <b>J</b>                    | <b>\$</b> 0 <b>9</b>   | -1.00 +1.30 E-U1                |                               | 27.1                      | 30C           | 1.06 00     |  |
|     | ĸ                                       | L                           | CCF- 605               | 0.00 40.036 00                  |                               | 81.8                      | 20C           | 1. (E 00    |  |
|     | L 10,P 5                                | 4014                        | 1-11                   | 1.2040.706-01                   |                               | 80.2                      | 306           | 1. (E 00    |  |
|     | L 1C, P 13                              |                             | 1266                   | 5.9010.146 01                   |                               | 65.3                      | <b>300</b>    | 7. 4E-01    |  |
|     | L 16, P 21                              | 401                         | 1267                   | 2.11:0.185 00                   |                               | ***                       | 400           | 2. 1E CO    |  |
|     | L 11,P17-1                              | 233                         | 165 -000               | 2.4041.20 € -131                |                               | 58.5                      | 30 <b>C</b>   | C4 1.(£ 00  |  |
|     |                                         |                             |                        |                                 |                               |                           |               |             |  |

| TAB  | TABLE E.3 (CONTINU | INUED)            |          | 0 8 8 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 |                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1               | 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |  |
|------|--------------------|-------------------|----------|-----------------------------------------|-------------------|-----------------------------------------|---------------------|-----------------------------------------|--|
| AKC  | ARC LOCATION CO    | 1LW<br>COLLECTION | N Y      | FU-239,240<br>ACTIVITY                  | UPZNIUM<br>(PICRO | Y IELC<br>(R=RE                         | COUNT<br>TIME       | ANAL JHON                               |  |
| 1    |                    | NO.               | • C V    | (000)                                   | CKAMS J           | <b>5</b> '                              |                     | 1                                       |  |
| 8.41 | . 11.017-2         | 2335-2            | CCD- 592 | .30 11.10                               |                   | 65.6                                    | 2C C                | 1. (6                                   |  |
| 7    |                    | •                 | )<br>}   | 00 47                                   |                   | 3.55                                    | 30 <b>2</b>         | 1.08-                                   |  |
|      | **                 | 4                 | 594      | .0014.00E-0                             |                   | 66.4                                    | <b>500</b>          | CA 1.CE 00                              |  |
|      | · <b>v</b> n       | 'n                | 1        |                                         |                   |                                         | <b>300</b>          | 1.(6-                                   |  |
|      | L 12,P 13-1        | 2334-1            | CCO- 586 | .54 t0.04E 0                            |                   | 83.6                                    | <b>500</b>          |                                         |  |
|      | 7                  |                   | 583      | 40.34E 0                                |                   |                                         | <b>3</b> 25         |                                         |  |
|      | •                  | m                 | 588      | .30 tl. 30 E-0                          |                   |                                         | <b>300</b>          | 2. (E-                                  |  |
|      | •                  | <b>4</b>          | 589      | 43 to.21 E 0                            |                   | 42.1                                    | 300                 | <b>1.</b> (E                            |  |
|      |                    | · 40              | CF-      | 59 t0.20E 0                             |                   | 53.4                                    | <b>302</b>          | <b>1.</b> (E                            |  |
|      | (12.821-1          | 2331-1            | CCD- 576 | 22 tO.07E                               |                   | 46.3                                    | <b>5</b> CC         | CA 1.2E 01                              |  |
|      | 7                  | •                 |          | 38 10. 18E 0                            |                   | 57.6                                    | 2C C                | J. (E                                   |  |
|      |                    | ורח               | 578      | 25 to. 17E 0                            |                   | 2.4.5                                   | 302                 | 1                                       |  |
|      | • •                | •                 | 579      | .07:0.07E 0                             |                   | 10.8                                    | 306                 | 1.36-                                   |  |
|      | •                  | ul                | CF.      | 40 10.30                                |                   | 65.5                                    | <b>3</b> 36         | •                                       |  |
|      | 1.13.05            | 2                 | ┐        | .1840.09E 0                             |                   | ٠                                       | <b>)</b> ) 5        | 2.76                                    |  |
|      | L 14,P1-1          | 2328-1            | -03      | .24 tO . 20E 0                          |                   | •                                       | 704                 |                                         |  |
|      | ~                  | 1                 |          | .8910.30E 0                             |                   |                                         | <b>3</b> 0 <b>0</b> | 7. (?-                                  |  |
|      | , ,                | 1 (**             | 568      | .20 #1.00 E-0                           |                   | 73.6                                    | 30 <b>C</b>         |                                         |  |
|      | ~                  | ধ                 | 569      | .9340.2                                 |                   | 53.8                                    | <b>50C</b>          | 5.(6-                                   |  |
|      | <b>4</b> 7         | 5                 | ,        | .1740.                                  |                   |                                         | )<br>)<br>)         |                                         |  |
|      | 1 14.95-1          | 2329-1            | -00      | -300.44.006-                            |                   | 5. 9.3                                  | <b>3</b> 04         | J. (E                                   |  |
|      | ~                  | ,                 |          | .00 15.00 E-0                           |                   | 35.6                                    | 400                 | <b>.</b> (E                             |  |
|      | , ,                | · m               | 513      | .00.19.00                               |                   | 24.0                                    | <b>30</b> 2         | 1. CE                                   |  |
|      | 4                  | <b>4</b>          | 574      | .2110.276 0                             |                   | 2.55                                    | )<br>)<br>?         | ). (E                                   |  |
|      | · <b>v</b> :       | · w               | C.F.     | 3011.                                   |                   | . 8.                                    | <b>30C</b>          | <br>(E                                  |  |
|      | 1.15.217-1         | 2332-1            | 185 -000 | .0042.                                  |                   | 61.7                                    | ეე5                 | 7. (E-                                  |  |
|      | ~                  |                   | 585      | 1.4010.106-01                           |                   | 66.2                                    | )) <b>?</b>         | A 3.(E-                                 |  |
|      |                    |                   | 583      | .60:1.80                                |                   | 39.4                                    | <b>3</b> 00         | J. €                                    |  |
|      | - 4                | 4                 | 584      | .6015.                                  |                   | 70.5                                    | <b>30C</b>          | CA 1.(E-C2                              |  |

| TAI  | TABLE E.3 (CONTINUED)                   | INDED)              |                                         |                                 | 1 1 1                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | •                   |                                           |
|------|-----------------------------------------|---------------------|-----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|-------------------------------------------|
| . A  | AAC LOCATION CO                         | 16 W COLLECTION 19. | 1LW<br>ANALYSIS<br>NO.                  | FU-239,240<br>ACTIVITY<br>IDPP) | URAN 1UH<br>(r ICRO<br>Grams)                                                                    | Y 1ELC<br>(R#RE<br>WORK)                | COUNT<br>TIME       | AHAL MON                                  |
| i    | • • • • • • • • • • • • • • • • • • • • | †<br>†<br>†<br>†    | : : ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |                                 | 7<br>7<br>1<br>8<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |                                         | !<br>!<br>!         | 7<br>6<br>7<br>7<br>8<br>8<br>8<br>1<br>8 |
| C AL |                                         | 2332-5              |                                         | 5.00 48.00 6-02                 |                                                                                                  | \$6.5                                   | <b>300</b>          | 1. (E CO                                  |
|      | 1.17,99-1                               | 2363-1              | CCO- 676                                |                                 |                                                                                                  | 61.5                                    | 30Z                 | ÷                                         |
|      | 7                                       | 7                   |                                         | 0.30 11.30 6-01                 |                                                                                                  | 51.7                                    | 100                 | 2.                                        |
|      | · m                                     | m                   | 678                                     | 4.00 16.00 E-02                 |                                                                                                  | 70.5                                    | <b>500</b>          | -                                         |
|      | -SF                                     | 4                   | 619                                     | 1.50 40.90 6-01                 |                                                                                                  | 188.6                                   | <b>3</b> CC         | -                                         |
|      | •                                       | 'n                  | CCF- 680                                | 6.50#1.70E-01                   |                                                                                                  | 41.5                                    | <b>30</b> 2         | -                                         |
|      | 1.18.95-1                               | 2359-i              | CCJ- 666                                | 1.20 #1.20 E-01                 |                                                                                                  | 45.1                                    | <b>5</b> 00         | _:                                        |
|      | ~                                       | 7                   |                                         | 0.0010.116 00                   |                                                                                                  | 41.7                                    | <b>5</b> 0 <b>C</b> |                                           |
|      | · ~                                     | m                   | 899                                     | 1.1440.146 00                   |                                                                                                  | 75.5                                    | 200                 | <u>.</u>                                  |
|      | •                                       | 4                   | 699                                     | 1.9041.106-01                   |                                                                                                  | 59.0                                    | 100                 | 'n                                        |
|      | Š                                       | S                   | CCF- 670                                | 1.5041.006-01                   |                                                                                                  | 5.5                                     | )<br>)<br>(         | CA 1. (E CO                               |
|      | L 18, P 21-1                            | 2361-1              | ,                                       | 6.00 t9.00 E-02                 |                                                                                                  | 63.4                                    | <b>5</b> 00         | <b>:</b>                                  |
|      | ~                                       | 7                   |                                         | 4.00 17.00 E-02                 |                                                                                                  | 21.0                                    | <b>500</b>          |                                           |
|      | •                                       | · M                 | 673                                     | 5.30 11.20 6-01                 |                                                                                                  | 43.4                                    | 400                 | ÷                                         |
|      | *                                       | 4                   | 674                                     | 1.40+11.00 €-01                 |                                                                                                  | 29.6                                    | <b>၁</b> ၁၄         | 1. (E CO                                  |
|      | •                                       | Ņ                   | CCF- 675                                | 0.0040.076 00                   |                                                                                                  | 31.6                                    | <b>506</b>          | 1.06 00                                   |
|      | . 68'517                                | 4130                | _                                       | 4.0010.406-01                   |                                                                                                  | 78.4                                    | 306                 | 1. CE CO                                  |
|      | L 20, P 5- 1                            | 2354-1              | 949 -022                                | 4.57 to. 30 £ 00                |                                                                                                  | 83°C                                    | <b>5</b> 00         | 5. (E-01                                  |
|      | 2                                       | 2                   |                                         | 6.55 to.27E 00                  |                                                                                                  | 85.7                                    | <b>5</b> CC         | 8. (E-01                                  |
|      | 1                                       |                     | 619                                     | 4.7340.316 00                   |                                                                                                  | 12.3                                    | <b>300</b>          | <b>:</b>                                  |
|      | <b>J</b>                                | 4                   | 649                                     | 7.00 #7.00 E-02                 |                                                                                                  | 90°C                                    | <b>30</b> 8         | CA 2. (E-C2                               |
|      | · 40                                    | v                   |                                         | 1.4040.706-01                   |                                                                                                  | 68.1                                    | 20C                 | -                                         |
|      | L 20, P 13-1                            | 2355-1              | CCO- 651                                | 7.6740.238 01                   |                                                                                                  | 82.£                                    | 20C                 | 4                                         |
|      | 7                                       | ~                   |                                         | 3.1040.90E-01                   |                                                                                                  | 63.6                                    | 2 C C               | CA 1. (E-01                               |
|      |                                         | , m                 | 653                                     | 1.7010.196 00                   |                                                                                                  | 56.5                                    | <b>3</b> 00         | 6. (E - Cl                                |
|      | •                                       | •                   | 654                                     | 8.0018.00E-02                   |                                                                                                  | 73.8                                    | <b>30</b> 0         |                                           |
|      | · 40                                    | 'n                  |                                         | 1.4010.706-01                   |                                                                                                  | 70.5                                    | 20C                 | 3. CE-                                    |
|      | L 21.P1-1                               | 2358-1              | 199 -023                                | 1.40 to. 70 E-01                |                                                                                                  | 69.5                                    | <b>30</b> 2         | 3. (E-                                    |
|      | 2                                       | ~                   |                                         | 1.20 +1.00 €-01                 |                                                                                                  | 4.64                                    | <b>5</b> 00         | ċ                                         |
|      |                                         |                     |                                         |                                 |                                                                                                  |                                         |                     |                                           |

| TAB  |            | TINUED)        |                                 |                                       |                                      |                          | †<br>†<br>†         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|------|------------|----------------|---------------------------------|---------------------------------------|--------------------------------------|--------------------------|---------------------|------------------------------------------------|
| ARC  | LOCATION   | COLLECTION 16. | TLW<br>ANALYSIS<br>NG.          | FU-239,240<br>ACTIVITY<br>(OFP)       | URAN IUM<br>(P [CRO<br>GRAMS)        | Y IELC<br>(R*RE<br>YORK) | COUNT<br>TIME       | ANAL MON                                       |
| 1    |            | :<br>:<br>:    | ;<br>;<br>;<br>;<br>;<br>;<br>; | * * * * * * * * * * * * * * * * * * * | T<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | †<br>†<br>†<br>†<br>†    |                     | )<br>(<br>)<br>(<br>)                          |
| 8 ∆( | L 21,P1-3  | 2358-3         | CC0- 663                        | .00 46.00 E-0                         |                                      | 59.C                     | <b>308</b>          | 5. CE-                                         |
|      | *          | 4              |                                 | .00 +7 .00                            |                                      | 67.1                     | <b>302</b>          | ; · (E-                                        |
|      | s.         | Ś              | CCF- 665                        | 2.00 t5.00 E-02                       |                                      | 52.3                     | 200                 | 1. CE                                          |
|      | L 21,P17-1 | 2357-1         |                                 | .20 40.90                             |                                      | 9.75                     | <b>50C</b>          | • (E                                           |
|      | ~          | 7              | 159                             | .60 40.90                             |                                      | 65.6                     | <b>302</b>          | ٠                                              |
|      | 3          | m              | 658                             | .4011.30                              |                                      | 5.54                     | 100                 | 1.06-                                          |
|      | *          | •              | 659                             | .00 #5 .00                            |                                      |                          | <b>3</b> 0 <b>2</b> | 1. (E                                          |
|      | 5          | 5              | ,                               | 06.0404.                              |                                      | 62.5                     | 30 <b>£</b>         | 6. CE-                                         |
|      | L 22,P 13  | 4005           | C 14-1263                       | .44 10.17                             |                                      | 80.5                     | 300                 | 2. 4E                                          |
|      | L 23,P 1-1 | 2353-1         |                                 | .00 +9.00                             |                                      | 51.1                     | <b>307</b>          | <b>i.</b>                                      |
|      | 7          | 7              | 642                             | .00 +5 .00                            |                                      | 68.6                     | <b>302</b>          | 1. Œ                                           |
|      | m          | <b>m</b>       | 643                             | .10 40.60                             |                                      | 11.5                     | 30 <b>c</b>         | 1.6                                            |
|      | 4          | 4              | 949                             | 3.10#1.00E-01                         |                                      | 5.33                     | <b>308</b>          | t                                              |
|      | 41         | 2              | 1                               | .0017.001                             |                                      | €0.€                     | ) ) ?               | <b>1.</b> (6                                   |
|      | L 25,P9    | 4005           | 7                               | .87 40. 191                           |                                      | 19.3                     | 300                 | 2. SE                                          |
|      | L 26,P13-i | 2316-1         | 168 -000                        | 3.30 #1.10 E-01                       |                                      | 65.1                     | <b>3</b> 02         | CA 1. CE 00                                    |
|      | ~          | ~              | 555                             | 0.00 40.08 E 00                       |                                      | €2.₽                     | <b>32</b> 2         | 1.08                                           |
|      | <b>~</b>   | m              | 553                             | 6.00 16.00 E-02                       |                                      | 63.3                     | 300                 | 1.(8-                                          |
|      | 4          | 4              |                                 | 1.40 10.70 8-01                       |                                      |                          | 400                 | 3, (8-                                         |
|      | r          | vı             | CCF- 555                        | 2.00 to.60 E-01                       |                                      | £0.5                     | 400                 | 2. CE-                                         |
|      | 1-21,617-1 | 2346-1         |                                 | 94 00.                                |                                      |                          | <b>5</b> CC         | 1. (£                                          |
|      | 7          | ~              | 617                             | Š                                     |                                      | ċ                        | )<br>)<br>1         | 1. CE                                          |
|      | m          | e              | 819                             | .00.14.00E                            |                                      | 5.54                     | 904                 | 1. (E                                          |
|      | *          | 4              |                                 | 1.2011.206-01                         |                                      | £1.7                     | 100                 | CA 1.CE 00                                     |
|      | 8          | ĸ              |                                 | t0.80E-                               |                                      | 61.3                     | )<br>)<br>)         | 1.06-0                                         |
|      | L 28,P13   | 4017           | 126                             | w                                     |                                      |                          | )) <b>?</b>         | 1 . ¿E                                         |
|      | L 29,P1-1  | 1-0582         |                                 | 10.176                                |                                      | £7.6                     | <b>5</b> 00         | 1. CE C                                        |
|      | ~          | 7              | 627                             | 0+1.00 E-0                            |                                      |                          | )<br>)<br>(         | CA 3. CE-02                                    |
|      | 64         | m              | 6.28                            | 4.02 10.20 00                         |                                      | 30.1                     | <b>4</b> CC         | 5. (E-C2                                       |

| TAB  | TABLE E.3 (CONTIN                       | (TINUED)                 |                                         |                                         |                                         | 1                        | 1             |              |
|------|-----------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------|---------------|--------------|
| ARC  | ARC LOCATION                            | TLK<br>COLLECTICN<br>NO. | TEM<br>ANALYSIS<br>NO.                  | PU-239,240<br>ACTIVITY<br>(DFP)         | URANIUM<br>(FICRO<br>GRAMS)             | Y 1ELC<br>(R*RE<br>WORK) | COUNT<br>TIME | ANAL /HON    |
| !    | * * * * * * * * * * * * * * * * * * * * |                          | * ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 8 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • • • • • • • • • • • • • • • • • • • • |                          |               | 1 1 1        |
| BAL  | 129,P1-4                                | 2350-4                   | 629 -000                                | 4.38 to. 37 E 00                        |                                         | 72.B                     | <b>30</b> C   | 'n           |
|      | ın                                      | 'n                       | CCF- 630                                | .00 18.00                               |                                         | 78.5                     | <b>30</b> 0   | 2. CE-       |
|      | 1-60'627                                | 2351-1                   |                                         | .77 to.22E                              |                                         | 74.1                     | 308           | -3)          |
|      | 2                                       | 2                        |                                         | .04 to . 18 E                           |                                         | 52°C                     | <b>307</b>    | 2.56-01      |
|      | m                                       | 6                        | 633                                     | .4740.216                               |                                         | 72.6                     | ეე <b>?</b>   | <del>.</del> |
|      | ~                                       | 4                        | 634                                     | 1.70 t0.70 E-01                         |                                         | 62.8                     | <b>308</b>    | <b>:</b>     |
|      | 5                                       | 5                        |                                         | 8.0016.00E-02                           |                                         | 61.C                     | 308           | . (F         |
|      | 1-210'627                               | 2352-1                   | 969 -000                                | 4.00 #4.00 E-02                         |                                         | 14.7                     | 4CC           | 6. (E-       |
|      | ?                                       | 2                        | 637                                     | 3.00 #7.00 E-02                         |                                         | 48.1                     | <b>406</b>    | 1.08         |
|      | m                                       | <b>m</b>                 | 638                                     | 3.00 14.00 E-02                         |                                         | 3.61                     | <b>3</b> 24   | 1.06         |
|      | •                                       | 4                        | 639                                     | 3.00 t3.00 E-02                         |                                         | 4.53                     | 134<br>4CC    | <b>1.</b> (E |
|      | ~                                       | ĸ                        | CCF- 640                                | 0.0010.076 00                           |                                         | 46.1                     | 30Z           | CA 0. CE 00  |
|      | L 30, P 21-1                            | 2349-1                   | CCO- 621                                | 1.80 #1.20 €-01                         |                                         | 25.1                     | 10            | <b>1.</b> (6 |
|      | 2                                       |                          | 622                                     | 3.00 t6.00 E-02                         |                                         | 16.4                     | 100           | 1.(6         |
|      | •                                       | ~                        | 623                                     | 2.5041.306-01                           |                                         | 47.4                     | 20C           | . (E         |
|      | •                                       | •                        | 524                                     | 5.30 15.00 E-92                         |                                         | 16.3                     | <b>302</b>    | 1.(6-        |
|      | •                                       | S                        | CCF- 625                                | 1.30 10.00 6-01                         |                                         | 82.C                     | 221           | 1. (6-       |
|      | 131,49                                  | 4 ( 1 8                  | 7                                       | 8.7940.715 00                           |                                         | £ 6 . 2                  | )<br>)<br>(   | 1. CE-C2     |
| OBAL | 11,91                                   | 4C56                     | 1575                                    | 9.68 t0.16  03                          | 11.5                                    | 64.3                     | ¥             | €. (E - C1   |
|      |                                         |                          | CCO-2186                                | 7.49 10.28E 02                          | ٠.                                      | 1.52                     | <b>Y</b>      | 2.4€ 00      |
|      | 11,91-3                                 |                          | 2118                                    | 2.0112.016-01                           | ٠.                                      | 16.6                     | Ę             | 5. (E-02     |
|      | <b>.</b>                                | 4                        | 2119                                    | 5.57 to. 32£ 00                         | 1.59                                    | £1.2                     | 325           | 1.4€ 60      |
|      | v                                       | S                        | CCF-2120                                | 1.25 11.25 6-01                         | ċ                                       | 82.E                     | ξÇ            | 1.26-01      |
|      | 14,P5                                   | 4 C 2 3                  | 7                                       | 3.1411.116-01                           |                                         | 63.6                     | 30Z           | ۳            |
|      | ( 7, P1                                 | 4015                     | 1572                                    | 1.4912.236-01                           | 0.208                                   | . B.                     | 100           | 1. (E CL     |
|      | L 13,01                                 | 4001                     | 1570                                    | 6.3710.37E 00                           | 0.257                                   | 1. B.                    | 300           | w.           |
|      | L13,P17                                 | 4009                     | 1251                                    | -0.2911,136-01                          | 0.193                                   | 28.6                     | 100           | ٣            |
|      | 1.19,917                                | 4131                     | 1576                                    | 4.2013.156-01                           | 0.133                                   | 27.6                     | 221           | 1.06 01      |
|      | 122,05                                  | 4004                     | 1568                                    | 4.0311.376-01                           | 0.454                                   | 51.6                     | )<br>)<br>(   | 1. (8 01     |

| TABLE E.3 (CONTINUED) | NTINUED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | *************************************** | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1               |               |              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------|-----------------|---------------|--------------|
| ARC LOCATION          | 11 NO 11 ON | ILA<br>ANALYSI S | FU-239,240<br>ACTIVITY                  | URAN IUM<br>(PICAD                      | Y IELC<br>(R=RE | COUNT<br>TIME | ANAL /HON    |
|                       | ٠٥٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC.              | Q 1                                     | 4                                       | WORK 1          | ;<br>;<br>;   |              |
| 88AL L 22.P 21        | 4006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14-1             | . 22E 0                                 | 2.1                                     | -:              | 200           | <u> </u>     |
| 1 28                  | 4020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | .80 #1.19E-                             |                                         | 1.53            | 20C           | 1. (E C1     |
| E 1C-5-5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C SF -1 980      | .40 #0.23E 0                            | 158.                                    | <b>:</b>        |               | æ            |
| 43                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1981             | 44 +0.04E 0                             | 668.                                    | 4)              | 30            | æ            |
| ~                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1982             | .0940.198 0                             | 95.3                                    |                 |               | Æ            |
| w                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 983            | .67 to. 11E 0                           | 74.1                                    | ٧ì              |               | ¥            |
| v                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1984             | .05 #0.13E 0                            | 143.                                    |                 |               | ÷            |
| 10                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1985             | .86 tO.25E 0                            | 14.3                                    |                 | 40            | Ę.           |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1986             | .75 t0.03E 0                            | 16.1                                    |                 | 3 C           | £E-          |
| 14-5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2001             | 11 to. 13E 0                            | 383.                                    | ~1              |               | <b>.</b>     |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2002             | 56 t0.04E 0                             | .761.                                   | ٩.              | 7 %           | #            |
| ) <b>F</b> ~          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2003             | .7940,16E 0                             | 2.20.                                   | ~               | 3 C           | æ            |
| • •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005             | 240.05E 0                               | 19.4                                    | 4               | <b>)</b> 6    | 3,5          |
| · Or                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005             | .27 tO.03E U                            | .44                                     | σ               | 4 (           | <b>3</b>     |
| 01                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2006             | .7810.178 0                             | 0.683                                   | _               | 3.5           | ų            |
| - 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2007             | 4                                       | . 166                                   | 32.0            |               | <u>3</u> E-  |
| MG8 DM-C1-1           | 2277-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115 -000         | .4910.25E 0                             |                                         | ¥               | ~             | ξĒ           |
| 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 215              | .98 to.16E 3                            |                                         | æ               | Ü             | ĬĘ.          |
| m                     | æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 513              | .40 10 .04E 0                           |                                         | 1               |               | 3. 4E        |
| 4                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 514              | .24 10.17E 0                            |                                         | 0               | C             | . CE         |
| so.                   | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CF-              | .65 t0.32E 0                            |                                         | Ġ.              | ũ             | <b>g.</b> (F |
| 1-23                  | 1-6122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CC3- 521         | .32 to .23E 0                           |                                         | ¥               | Ñ             | <u></u>      |
| 2                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 525              | .12 to .03E 0                           |                                         | 3.0             | 3 C C         | <u>.</u>     |
| · M                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 523              | .16 tO.15E 0                            |                                         | <b>;</b>        |               | A            |
| *                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 524              | .0110.036 0                             |                                         | ;               | ū             | - 3E         |
| •                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCF- 325         | .7410.05E 0                             |                                         | ÷               | J             | • (E         |
| C3-1                  | 2274-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -05              | 5 40.15E 0                              |                                         | 66.1            | )?<br>?       | 3. 36 60     |
| ~                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 164              | .3010.26€                               |                                         | <u>.</u>        |               | <b>.</b>     |
| •                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.28             | 10.5210.016.01                          |                                         | £2.8            | 20C           | 1. CE CO     |

\* - NEW DATA THIS REPORT

|--|

| TAB     | TABLE E.3 (CONTINI | N TINUED)                               | ;<br>;<br>;<br>;  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |             |                     |             |  |
|---------|--------------------|-----------------------------------------|-------------------|---------------------------------------|-----------|-------------|---------------------|-------------|--|
| A P. C. | ARC LOCATION       | H 1                                     | i                 | FU-239,240                            | HOL MA RU | Y 1EL C     | COUNT               | ANAL JHON   |  |
|         |                    | כסרו                                    | ANAL YSI S<br>NC. | ACT1VITY<br>(DFP)                     | CRAMS )   | MCRK)       | <u> </u>            |             |  |
| 1       |                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | T                 |                                       | *         |             |                     |             |  |
|         | DH-C3-4            | 2274-4                                  |                   | 3.4041.10E-01                         |           | 52.5        | <b>3</b> CC         | £           |  |
| 1       | •                  | <b>5</b>                                |                   | 8.0048.00E-02                         |           | 4.75        | <b>30</b> 2         | •           |  |
|         | 7                  | 2278-1                                  | . 216 -000        | 4.51 #0.00E 02                        |           | 75.6        | 76                  |             |  |
|         | ~                  | ı                                       |                   | 1.82 to. 12E Ol                       |           | 36.8        | <b>300</b>          | 4. te cc    |  |
|         |                    |                                         | 518               | 3.31 to.08 E 02                       |           | 11.3        | 100                 | 5. IE 00    |  |
|         | <b>1</b> 4         | , 4                                     | 519               | 5.8040.70E-01                         |           | 66.E        | 300                 | w           |  |
|         | . 47               | · •                                     |                   | 4.77 t0.79 E 00                       |           | 5.15        | 20,5                | 4. (E       |  |
|         | , <u>,</u>         | 2275-1                                  | CCD- 501          | 7.42 +0.22E 02                        |           | 78.6        | 32                  | بې          |  |
|         | ``                 |                                         | 502               | 2.26 t0.06E 02                        |           | 80.1        | 100                 | 3. (E CO    |  |
|         | 1 600              | (F)                                     | 503               | 1.67 #0.05E 02                        |           | 75.3        | 100                 | بھ          |  |
|         | 1                  | 1 <b>4</b> 7                            | 504               | 6.80 #1.10 E-01                       |           | 01.6        | <b>300</b>          | CA 1. (E CO |  |
|         | * ***              | . RU                                    |                   | 1.30 to 60 E-01                       |           | 1.5.1       | 325                 | 1. CE       |  |
|         | C 6- 1             | 2280-1                                  | 620- 526          | 8.71 to.25 E 02                       |           | 82.1        | <b>3</b> 2          | ш           |  |
|         | 7                  |                                         |                   | 3.36 t0.12E 01                        |           | 4.5         | <b>4</b> CC         | ш           |  |
|         | , m                | · m                                     | 528               | 8.70 to.30 E 01                       |           | 6 2 ° C     | <b>3</b> 00         |             |  |
|         | -                  | •                                       | 529               | 7.74 to.41E 00                        |           | 40.1        | <b>)</b> ) <b>†</b> | 6. (E-      |  |
|         |                    |                                         |                   | 2.70 t0.80 E-01                       |           | A. 6. C.    | 300                 | <b></b>     |  |
|         | C7-1               | 2276-1                                  | 905 -000          | 7.00 10.22E 02                        |           | 76.7        | ٦٢                  | 3. 3E CO    |  |
|         | ~                  | 2                                       |                   | 4.4140.13E 02                         |           | 74.2        | <b>5</b> C          | ш           |  |
|         | · m                | m                                       | 508               | 1.5240.05£ 02                         |           | é t • C     | 100                 | 3. ¿E       |  |
|         | •                  | *                                       | 209               | 5.50 t0.80 E-01                       |           | 52.4        | S<br>S<br>S         | L           |  |
|         | ·                  | 5                                       |                   | 8.50 t0.90 E-01                       |           | 66.6        | 400                 | ♣, (Ē-      |  |
|         | 17-1               | 3211-1                                  | CAD- 940          | 5.1440.136 03                         |           | 12.C        | ~                   | 2.1E 00     |  |
|         | 7                  | 7                                       |                   | 6.76 #0.21E 01                        |           | <b>90.4</b> | 3 C C               | 1.4E CC     |  |
|         | i (**              | · ~                                     | 345               | 2.10 #0.09E 01                        |           | 40.¢        | )<br>)<br>(         | 1.(E 00     |  |
|         | •                  | · •                                     | 943               | 1.36 tG. 14E 00                       |           | 65.3        | 300                 | •           |  |
|         | _                  | ~                                       |                   | 1.0540.136 00                         |           | 14.1        | 300                 | 4. (E-C2    |  |
|         | 1.5                | 3212-1                                  | CAD- 945          | 1.27 40.03E 03                        |           | 15.6        | 36                  |             |  |
|         | 7                  | ~                                       | 946               | 5.20 to. 35E 00                       |           | 64.0        | 3CC                 | 5. fc-01    |  |
|         |                    |                                         |                   |                                       |           |             |                     |             |  |

| ا<br>لا<br>لا | LOCATION    | 11 M<br>COLLEC 11 CN<br>NO. | TEN<br>ANALYSIS<br>NC• | FU-239,240<br>ACTIVITY<br>(OFF) | UP AN TUM<br>LY ICRO<br>GRAMS) | Y IELC<br>(R=RE<br>WORK) | COUNT<br>TIME    | ANAL JHON    |
|---------------|-------------|-----------------------------|------------------------|---------------------------------|--------------------------------|--------------------------|------------------|--------------|
| ¥ 0           | HO          | 3212-3                      | CAD-                   | 3.03 #0.30E 00                  |                                | ¥                        | 20C              | 3. (E        |
| 2             | 3           | 4                           | 948                    | 1.20 + 2.40 & -01               |                                | 48.6                     | 30               | CA 1. (E 00  |
|               | • •         | · •                         | 646                    | 1.70 #3.40 E-01                 |                                | (1)                      | Š                | 2. (E-       |
|               | • ~         | . ~                         | AFF                    | .40#1.                          |                                | •                        | 100              | 2. (E-       |
|               | DM-CEN      | 581                         |                        | .14 #0.                         |                                | 4                        | 30C              | . 4E         |
|               | DP-12       | 2272-A                      | CD-2                   | .4340.04E                       | 23.3*                          | G)                       | 30               | • EE         |
|               |             | •                           | ~                      | 8.7043.27E 01                   | 0.243                          | ~                        | 10C              | • 66         |
|               | •           | 4                           |                        | 5.08 to.16E 01                  | ċ                              | 1,4                      | 307              | • <b>6</b> E |
|               |             | 'n                          | Ę,                     | 8.20 *1.07 E-01                 |                                | _                        | 300              | . Œ-         |
| 0 م           | CHR-81A     | 9768                        | C VS-1469              | 7.29 to.58E 00                  |                                | ~                        | <b>30</b> 2      |              |
|               | 818         |                             | 1470                   | .53 t0.04E                      |                                | 4                        | 200              |              |
|               | B 2A        |                             | 1471                   | 2.78 t0.22E 00                  |                                | 14                       | )<br>)<br>?<br>( |              |
|               | 8 28        |                             | 1472                   | .0140.516                       |                                | •                        | <b>30</b> 0      |              |
|               | 8 34        |                             | 1473                   | .39 #1.02 E-                    |                                | 36.0                     | <b>60C</b>       |              |
|               | B 38        |                             | 1474                   | .49 t0.43E 0                    |                                | 16.2                     | 1000             |              |
|               | B 1A        | 9722                        | 2104                   | 2.10 t0.06£ 04                  |                                | ÷                        | )CC              |              |
|               | 918         |                             | 2105                   | .11 #0.06 E O                   |                                | ÷                        | 900              |              |
|               | BZA         |                             | 2106                   | .85 to.19E 0                    |                                | •                        | 321              | 6. CE-02     |
|               | 8 28        |                             | 2107                   | .29 to.05E 0                    |                                | ď                        | <b>20C</b>       |              |
|               | 8 34        |                             | 2108                   | .16 #0.03E 0                    |                                | •                        | 266              |              |
|               | 8 38        |                             | 2109                   | .34 t0.03E 0                    |                                | ÷                        | 3CC              |              |
| PCMR          | PCMR 2-83-5 | NONE                        | C SF-1973              | .98 tO.49E 0                    | 58.0                           | 5                        | <b>302</b>       | . 4E         |
| ,             | • • •       | <b>!</b>                    |                        | .86 to. 40E 0                   | 31.5                           | 13                       | 300              | · CE-        |
|               |             |                             | 1975                   | .62 #0.08 E 0                   | O.                             | ü                        | 30 <b>C</b>      | •            |
|               | • •         |                             | 1976                   | .82 to.06 E O                   |                                |                          | ÇÇ               | 2. EE OI     |
|               |             |                             | 1977                   | .33 t0.07E 0                    | •                              | ÷                        | 200              | • EE         |
|               | 10          |                             | 1978                   | .57 t0.04E 0                    | 0.954                          | <b>;</b>                 | <b>30</b> 0      | . ž          |
|               | )           |                             |                        |                                 |                                | •                        |                  | 4            |

. NEW DATA THIS REPORT

| TABLE E.4 RAI | DIOCHEMICAL   | ANALYSIS OF            | TABLE E.4 RADIOCHEMICAL ANALYSIS OF ROLLER COASTER PHYSICAL SAMPLES, CLEAN SLATE | ISICAL SAMPL                  | ES, CLEAN                | SLATE       | Ħ            | :  |
|---------------|---------------|------------------------|----------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------|--------------|----|
| ARC LOCATION  | TLW<br>11 NO. | TLW<br>ANALYSIS<br>NO. | FU-239,240<br>ACTIVITY<br>(DFM)                                                  | UR BN IUM<br>(FICRO<br>GRAMS) | Y IELC<br>(R*RE<br>HORK) | COUNT       | ANAL /MON    |    |
| 1             | <br>          | 1                      |                                                                                  | #<br>*                        |                          |             |              | Ι. |
| 62-1 TA-C1-1  | 5259-1        | CCD- 905               | 1.17 #0.03 € 06                                                                  |                               | 86.1                     | 32          | - C          | _  |
| 7             | 7             | 906                    | 940.05E 0                                                                        |                               | 68.3                     | 3 C         | 2.5E 0       | _  |
| 6             | 9             | 106                    | 740.25E 0                                                                        |                               | 62.C                     | 1 C         | 6. SE 0      | _  |
| •             | 4             | 806                    | 2.84 #0.06E 03                                                                   |                               | 73.5                     | 26          | 1.26 01      | _  |
| in            | 5             | CCF- 909               | 940.09E 0                                                                        |                               | \$6.1R                   | 200         | 4. 3E Q      | _  |
| G2-2 TA-C2-1  | 5258-1        | 006 -000               | 0 #0.04E 0                                                                       | 742.                          | 76.4                     | <b>3</b> 2  |              | _  |
| ~             | 7             | 106                    | 4940.04E 0                                                                       | 955.                          | 76.4                     | 26          | 1. EE 01     | _  |
| <b>m</b>      | •             | 306                    | 1.75 to.04E 05                                                                   | 55.2                          | £1.C                     | <b>5</b> C  | 1.26 01      |    |
| *             | 4             |                        | 0                                                                                | •                             | 66.P                     | 75          | B. CE CO     | 0  |
| •             | <b>5</b>      | CCF- 904               | 5.97 tO.18E 01                                                                   | 0.292                         | 64.5                     | 300         |              | 0  |
| 62-4 TB-C2-1  | 5256-1        |                        | 2.25 t0.05E 05                                                                   |                               | 74.5                     | 20          | 2.28 01      | _  |
| ~             | ~             | 968                    |                                                                                  |                               | 62.7                     | 2           | 1.56 01      |    |
| •             | m             | 897                    |                                                                                  |                               | 78.3                     | 2           | 1.76 01      | _  |
| •             | 4             | 868                    | 5.90 t0.17 € 02                                                                  |                               | 13.6                     | 100         | 1.26 01      | _  |
| 'n            | <b>V</b> 1    | CCF- 899               |                                                                                  |                               | 73.4                     | <b>1</b> 00 | 8.36-0       | _  |
| C2 BC-C3      | 5112          | C TD-1294              | 1.49 t0.07E 01                                                                   |                               | 79.0                     | 100         | 3. 26-0      | _  |
|               | 4597-1        | CAD-1041               | 4.30 to. 13E 02                                                                  |                               | 14.0                     | 721         | 9.36 00      | 0  |
| 7             | 7             | 1042                   | 0                                                                                |                               | ₹0.€                     | <b>3</b> 00 |              | 0  |
| 9             | E             | 1043                   | 2.87 +0.08 E 02                                                                  |                               | 8C . 2                   | 300         | 7.26 01      | _  |
| •             | 4             | 1044                   | 4 40.08 E 0                                                                      |                               | £0.3                     | 308         | 1            | _  |
| •             | <b>.</b>      | 1045                   | 0                                                                                |                               | 66.9                     | 2           | 2. tE        | 0  |
| <b>L</b>      | _             | CAF-1046               | o                                                                                |                               | 93.2                     | <b>302</b>  | CA 7. (E-0)  | د  |
| C 3           | 5113          | C TD-1295              | 1.06 #0.10 E 00                                                                  |                               | 67.0                     | 300         | 2.16-01      | _  |
| . 63          | 5115          | 1296                   | 6.3640.23E 01                                                                    |                               | 19.1                     | <u>ې</u>    | 1. CE 00     | 0  |
| 10-1          | 4 5 92-1      | CAD-1011               | 5.00 t5.00 E-02                                                                  |                               | £0.8                     | 300         |              | 0  |
| ~             | 7             | 1012                   | 2.9110.236 00                                                                    |                               | 76.7                     | <b>30</b> C | <b>2.</b> EE | 0  |
| •             | m             | 1013                   | 2.1010.80 6-01                                                                   |                               | 91.6                     | <b>308</b>  | CA 2. 16-01  | _  |
| ~             | •             | 1014                   | 9.37 10.34 5 00                                                                  |                               | 26.4                     | 1366        | 9. (6        | 0  |
| •9            | •             | 1015                   | 5.00 46.00 E-02                                                                  |                               | ¢1.1                     | 300         | 1. (E C      | 0  |

| TAB    | TABLE E.4 (CONTINUED)                 | NTINUED)                 |                               |                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          |             |            | į          | i        |
|--------|---------------------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------------------------|--------------------------|-------------|------------|------------|----------|
| ARC    | LOCATION                              | TLW<br>COLLECTION<br>NO. | TEM<br>TEM<br>ANALYSIS<br>NO. | FU-239,240<br>ACTIVITY<br>(0P#) | URAN JUM<br>(P. ZCRO<br>GRAMS 1         | Y JELC<br>(R.RE<br>MORK) | COUNT       | ANAL       | NAL /MON   | ;        |
|        | • • • • • • • • • • • • • • • • • • • | i                        | ) .<br>                       |                                 |                                         | •                        | ć           |            | 1          | •        |
| 79     | 8C-1C-7                               | ç                        | AF-1                          | .30 #1.20 E-0                   |                                         | 41.5                     | 777         | <b>5</b>   | اِوا       | <b>,</b> |
| ;<br>) | -                                     | -                        | 10-1                          | .7940.25E 0                     |                                         | 73.5                     | <b>3</b> 6  | <b>:</b>   | Ħ          | 0        |
|        | 7                                     | 8165-A                   | COS-1399                      | .45 ±0.07 E 0                   |                                         | 48.6                     | <b>3</b> C  | •          | ä          | 0        |
|        | 2 -                                   | `<br>`                   | · -                           | .51 ±0.07 E 0                   |                                         |                          |             | m          | 2E-        | _        |
|        | 74.0                                  |                          | 2004                          | 7940.07F 0                      |                                         | 19.9                     | 20          |            | 3E         | 0        |
|        |                                       |                          | 1401                          | 6.6540.216 03                   |                                         |                          | 2           | •          | (E-01      |          |
|        |                                       |                          | 1402                          | 47 t0 . 09 E 0                  |                                         | 64.0                     | 2 C         | *          | 3          | 0        |
|        | 7 7                                   |                          | 1 403                         | .42 ±0.05 E 0                   |                                         | •                        | 3 C         | 'n         | 3,         | 0        |
|        | 5 -                                   |                          | 1604                          | .06 #0.04 E O                   |                                         | 82.3                     | 36          | ě          | y          | 0        |
|        | 2 1 7 1 B                             | 6114                     | 10-1                          | 11 40.08E 0                     |                                         | 5                        | 2 C         | •          | 1E         | 0        |
|        | 10-10                                 | 4694                     | CAN-1035                      | 40 #11 00 E-0                   |                                         | 72.5                     | 20C         | ۶.         | 3          | _        |
|        | ,                                     | •                        | • -                           | 7041                            |                                         | •                        | 200         | •          | 1E-        |          |
|        | ÷ F                                   |                          | 1037                          | .75 to .27E 0                   |                                         | •                        | 30c         | ë.         | <b></b>    | ,        |
|        | 1 4                                   | 4                        | 1038                          | .24 to . 14E 0                  |                                         | 77.2                     | 30 <b>2</b> | ₹<br>1.    | 36         | 00       |
|        | · •                                   | · •                      | 1039                          | .56 to. 30E 0                   |                                         | 74.6                     | 20C         | ÷          | <b>1</b> E | 0        |
|        | , ~                                   | , ~                      | AF-1                          | .80 +0.16E 0                    |                                         | R1 .                     | 30Z         | <b>-</b> : | ξE         | -        |
|        | r 1                                   | 4581-1                   | 1                             | .7240.10E 0                     |                                         | 64.0                     | 36          | ٠          | æ          | 0        |
|        | • ~                                   | ;                        | }                             | .62 t3.04E 0                    |                                         | 11.9                     | 100         | 2.         | æ          | 0        |
|        | ) (~                                  | , en                     | 832                           | .1240.07E 0                     |                                         | 17.1                     | 100         | 3.         | #          | 0        |
|        | •                                     | •                        | 833                           | .2940.076 0                     |                                         | 47.2                     | 2C C        |            | žĒ         | 0        |
|        |                                       | · vr                     | CF                            | .0640.28E 0                     |                                         | 34.4                     | 20 C        | CA 2.      | æ          | CI       |
|        | ( 3-1                                 | 4 572-1                  |                               | .61 tO.07 E O                   |                                         | 63.3                     | 3¢          |            | £          | _        |
|        | . ~                                   |                          | ;                             | .38 tO.03E 0                    |                                         |                          | 3 C         | •          |            | ~        |
|        | •                                     | •                        | 827                           | .26 +0.17E 0                    |                                         | 19.5                     | <b>)</b>    |            | Æ          | _        |
|        | • •                                   | •                        | 828                           | .63 to.04E 0                    |                                         | 0.8×                     | 3C          |            | Ħ          | 0        |
|        | •                                     | - 127                    | - 40                          | .25 to .22 E O                  |                                         | 48.2                     | 20C         | 3.         | Ą.         | 0        |
|        | (3-1)                                 | 1-565 7                  | CAD-1029                      | .85 to . 16 E O                 | 369.                                    |                          | <b>3</b> C  | ÷          | <b>.</b>   | 0        |
|        | . ~                                   | •                        | _                             | .56 to .24E 0                   | 4.83                                    | 64.2                     | <b>3</b> C  | 8          | w          | 0        |
|        | , m                                   | · m                      | 1031                          | .5140.09                        | 0.268                                   | 4.2                      | 7           | -          | 9          | 0        |
|        |                                       |                          |                               |                                 |                                         |                          |             |            |            |          |

206

| TABLE E.4 (CONTINUED) |
|-----------------------|
| A                     |
|                       |
| CAD-1032              |
| 1033                  |
| AF-1                  |
|                       |
| _                     |
| CCD- 840              |
| 84.1                  |
| 842                   |
| 843                   |
| CF-                   |
| 7                     |
| 1018                  |
| 1019                  |
| 1020                  |
| 1021.                 |
| CAF-1022              |
| AD-1                  |
| 1024                  |
| 1025                  |
| 1026                  |
|                       |
| -                     |
| C 10-1301             |
| -                     |
| -                     |
| 5691                  |
| O.                    |
| 91                    |
| 05-140                |

| _           |  |
|-------------|--|
| (CONTINUED) |  |
| =           |  |
| ≤.          |  |
| Η           |  |
| Z,          |  |
| 0           |  |
| C           |  |
| _           |  |
|             |  |
| Ξ.          |  |
| ωi          |  |
|             |  |
| ΕŢ          |  |
| 7           |  |
| Д           |  |
| <           |  |
| TABLE       |  |
|             |  |

| ANAL JHON                       | 2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COUNT<br>TIME                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Y IELC<br>(R=RE<br>MORK)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| URAN 1UM<br>( MICRO<br>GRAMS 1  | 2.54*<br>2.54*<br>0.0250<br>0.517<br>0.140<br>1.36<br>4.27*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PU-239.240<br>ACTIVITY<br>{DFP} | 5.08 +0.11E 07<br>6.04 +0.11E 07<br>6.04 +0.11E 06<br>5.69 +0.10E 06<br>3.59 +0.08E 05<br>3.59 +0.08E 03<br>3.70 +0.09E 03<br>1.89 +0.09E 03<br>1.89 +0.09E 03<br>2.17 +0.19E 01<br>4.49 +0.19E 01<br>6.51 +0.19E 01<br>6.51 +0.16E 02<br>1.33 +0.09E 02<br>1.33 +0.09E 02<br>1.34 +0.09E 02<br>1.36 +0.09E 02<br>1.36 +0.09E 02<br>1.36 +0.09E 03<br>1.36 +0.09E 03<br>1.37 +0.09E 03<br>1.38 +0.09E 03                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TLW<br>ANALYSI S<br>NG.         | CDS-1406<br>1407<br>1409<br>1358<br>1358<br>1358<br>CCD- 821<br>822<br>CCF- 824<br>CAD-1009<br>CAD-2201<br>CDS-1360<br>CAD-2201<br>CCF- 835<br>CCF- 835<br>C |
| COLLECTION NO.                  | 8153<br>4569-1<br>4569-1<br>4583-1<br>4581-3<br>4581-3<br>4587-3<br>4587-3<br>8153<br>8153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOCATION                        | # # # 222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ARC                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

\*New data this report

| TAB | TABLE E.4 (CONTINUED) | NTINUED)       | 3<br>3<br>8<br>8        | * * * * * * * * * * * * * * * * * * * | 1<br>1<br>1<br>1<br>1<br>1     |                          |               |          |
|-----|-----------------------|----------------|-------------------------|---------------------------------------|--------------------------------|--------------------------|---------------|----------|
| ARC | ARC LOCATION          | COLLECTION NO. | TLN<br>ANALYSI S<br>NO. | FU-239,240<br>ACTIVITY<br>[DFF]       | UP BN IU4<br>(* 1CRO<br>GRAHS) | Y IELC<br>(R=RE<br>WORK) | COUNT<br>TIME | ANAL MON |
|     |                       |                |                         | 7240.19F G                            |                                | 4,000                    | 20            |          |
| 79  | מש - עם               |                | 5051-503                | 0 101 000                             |                                | 4.08                     |               |          |
|     | 7-83                  | ٠, ر           | LCU- 845                | 1.1640.28F 02                         |                                | 72.4                     |               | 4. CF 00 |
|     | <b>V</b> (1           | 4 (*           | 6.40                    | .27 to.15E D                          |                                | 62.6                     | 72            |          |
|     | 1 4                   | . 4            | 848                     | 46 40 . 20 E O                        |                                | 74.2                     | 20            |          |
|     | · •                   | . <b>r</b> u   |                         | .24 #0.03E 0                          |                                | 78.2                     | <b>3</b> CC   |          |
|     | C.8-1                 | 4586-1         | CAD- 999                | .6940.09E 0                           |                                | 71.6                     | )) <b>?</b>   |          |
|     | 7                     |                | _                       | .64 #0.14 @ 0                         |                                | 9·69                     | 100           |          |
|     |                       | · M            | 1001                    | .32 t0.23£ 0                          |                                | 711.2                    | 301           |          |
|     | · •                   | •              | 1002                    | .5040.05E 0                           |                                | B7.8                     | 100           |          |
|     | ••                    | w              | 1003                    | .05 to.03E 0                          |                                | 71.6                     | 3CC           |          |
|     | ~                     |                | CAF-1004                | .49 t0.05E 0                          |                                | 27.7                     | <b>33</b> 5   |          |
|     | 6)                    |                | C TO-1302               | .12 #0.05E 0                          |                                | 75.3                     | <b>&gt;</b>   |          |
|     | 5)                    |                | CDS-1364                | .69 #0.16E 0                          |                                | 9.89                     | <b>5</b> C    |          |
|     | 20                    | 4-813-A        | CCD-2199                | .00 #0.03E 0                          | 4.45*                          | 55.<br>F. S. B.          | š             |          |
|     | 10                    |                | CDS-1365                | .96 to.13E 0                          |                                | 11.1                     | 4             |          |
|     | 10-3                  | ~              | CC0-2139                | .13 #0.07E 0                          | 1.73                           | 81.3                     | 20C           |          |
|     | 4                     |                | 2140                    | .86 #0.08 E O                         | 80.9                           | 76.7                     | )<br>)<br>    |          |
|     | 5                     | S              | CCF-2141                | .7340.07E 0                           | 0.637                          | £1.1                     | 300           |          |
|     | 11                    |                | C TD-1299               | .34 #0.03E 0                          |                                | 83.6                     | <b>3</b> C    |          |
|     |                       |                | CDS-1366                | .95 t0.06E 0                          |                                | 40.6                     | 3C            |          |
|     | 12-1                  |                | CCD- 815                | .08 to. 10 E 0                        |                                | 11.5                     | 30            |          |
|     | 7                     | ~              | 816                     | .1540.025 0                           |                                | 67.57                    | 36            |          |
|     | i mi                  | m              | 817                     | .40 40.02E 0                          |                                | £ 6 . P                  | <b>¥</b>      |          |
|     | *                     |                | 918                     | 0                                     |                                | 76.7                     | 40            |          |
|     | **                    |                | CCF- 819                | .6840.226 0                           |                                | 35.6                     | 20C           |          |
|     | 13                    |                | C T0-1300               | .2540.07E D                           |                                | 76.5                     | <b>)</b> 2    |          |
|     | 13                    | 8153           | CD 5-1368               | 0 40.01E 0                            |                                | 4.80                     | 35            |          |
|     | 7.                    |                | 1369                    | .75 #0.17 E O                         |                                | 0.08                     | <u>ح</u>      |          |

\*New data this report

|                                         | •                                     | !<br>!<br>!                                                                    | 8         | ဝ     | 10   | 10          | 00    | င္ပ  | 00   | 00         | 00          | 00         | ဝ္ပ  | 00   | 00   | ပ္ပ       | ဝ္ပ  | 00       | 00         | ರ           | 00       | 00   | 0              | ៰    | 9    | 00    | Ş          | 00    | 00       | Q        |
|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|-----------|-------|------|-------------|-------|------|------|------------|-------------|------------|------|------|------|-----------|------|----------|------------|-------------|----------|------|----------------|------|------|-------|------------|-------|----------|----------|
| ANAL JHON                               |                                       |                                                                                | • CE      | •     | •    | •           | •     | •    | •    | •          |             |            |      |      |      |           | •    |          | •          |             | •        |      |                |      | •    |       |            | ٠     | ٠        | •        |
| ANA                                     |                                       |                                                                                | Ľ         | e i   | ~    | <u>ن</u> ــ | ~     | 7    | 4    | ď          | ĸ           | 'n         | m    | m    | m    | m         | m    | พ้       | -          | j           | ×٠       | ۳.   | <del>z</del> i | نہ   | ø    | Ň     | ~          | Ä     | ż        | 2        |
| COUNT                                   | 11ME                                  | †<br>•<br>•<br>•<br>•<br>•<br>•                                                |           |       |      | ي<br>م      |       |      |      |            |             |            |      | 3C   | 30   | 20        | 3 C  | 3C       | 3 C        | <b>2</b> CC | 3C       | 3C   | <b>5</b> C     | 2 C  | 2 C  | 3C    | <b>3</b> C | 3 C   | 2 C      | 2C       |
| Y IEI C                                 | FARE WORK )                           |                                                                                | 27.8      | 27.5  | 66.3 | 72.7        | 65.E  | 19.5 | 43.1 | 75.0       | 11.1        | £9.8       | 54.4 | 75.C | •    | 60.c      | 82.0 | 71.4     | 72.4       | 4.69        | 8.<br>5. | 17.9 | 49.5           | 68.1 | 63.6 | 10.8  | 7.75       | \$1.5 | 66.3     |          |
| ALL VA GL                               | CP ICRO                               | <br> -<br> - |           |       |      |             |       |      | ٠,   | •          |             |            | •    |      |      |           |      |          |            |             |          |      |                |      |      |       |            |       |          |          |
|                                         |                                       |                                                                                | 70        | 07    | 10   | 20          | 90    | 90   | 0.5  | . 90       | 90          | 60         | 0 5  | 0 5  | 90   | 90        | 90   | 90       | <b>†</b> 0 | 01          | 90       | 1.0  | 07             | 01   |      | 0 5   |            |       |          |          |
| 07                                      | <u> </u>                              |                                                                                | m         |       | 98   | .04E        | . 16E | 4    | []   | 2          | 17          | 9          | 12   | .08€ | S    | 4         | 2    | 0        | 360.       | 5           | 08       | 9    | 60             | •03E | 91   | ~     | 3          | 2     | 0        |          |
| 2,940                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                | *         | 6 ‡0  | 9    | 68 40.      | 0 ‡ 0 | 5 +0 | 7 +0 | 2 10       | 5 ‡0        | 6 +0       | 4 +0 | 940  | 5 40 | 9 t0      | 0    | 3        | 3 10       | 1 10        | S        | •    | 5 to           | 0    | 9 10 | 1 +0  | 2 40       | 1 0   | 0 0      | 04.40    |
| )-11d                                   | ACT [V]                               |                                                                                | •         | •     | •    | 2.6         | •     | •    | •    | •          | •           | •          | •    | •    | •    | •         |      | •        |            | •           | ٠        | •    |                | •    | •    |       | •          |       | •        |          |
|                                         | 5 ]                                   |                                                                                | 0         | ~     |      | *           | Ń     | ۰    | ~    | <b>م</b> ې | Ġ.          | 0          | _    | 2    |      | <b>.</b>  | S    | 9        | -          | ٠           |          | 2    | <u>س</u>       | •    | s    | 9     | _          | •     | <b>~</b> | <b>C</b> |
| 3                                       | ANALYSE<br>NO.                        |                                                                                | 05-137    | _     | 134  | 1344        | 134   | 134  | 134  | 134        | 134         | 135        | 135  | 135  | 135  | 135       | 135  | 135      | 135        | 177         | 137      | 137  | 137            | 137  | 137  | 137   | 137        | 137   | 137      | 4        |
| •                                       |                                       | 1                                                                              | ວ         |       |      |             |       |      |      |            |             |            |      |      |      |           |      |          |            |             |          |      |                |      |      |       |            |       |          |          |
| (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | EC TI ON                              | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                        | 1153      |       |      |             |       |      |      |            |             |            |      |      |      |           |      |          |            | 15          | 1153     |      |                |      |      |       |            |       |          |          |
| CONTINUED)                              | כסרו                                  |                                                                                | 30        |       |      |             |       |      |      |            |             |            |      |      |      |           |      |          |            | ₩.          | ∞        |      |                |      |      |       |            |       |          |          |
|                                         | 5                                     |                                                                                | •         | 0     |      | ~           | m     | 4    | •    | •          | <b>G</b> C) | σ.         | o    | _    | ~    | <b>~1</b> | 4    | 'n       | 9          | a)          |          | 5.1  | 5.2            | 5.3  |      | 7.0-1 |            |       | 7.2      |          |
|                                         | LUCA   104                            | 1                                                                              | BH-1      | 80- C |      | Ü           | U     | U    | U    | U          | · u         | . <b>.</b> |      | -    |      | -         | 7    | <b>-</b> |            | J           | CH-C     | ပ    | U              | U    | U    | U     | Ç          | U     |          |          |
| 700                                     | ر<br>«                                |                                                                                | <b>62</b> |       |      |             |       |      |      |            |             |            |      |      |      |           |      |          |            |             |          |      |                |      |      |       |            |       |          |          |

210

| TABI | TABLE E.4 (CO) | (CONTINUED)                             |                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <br>                      | 1 1 1 1 1    | 1 1 1        | į            |
|------|----------------|-----------------------------------------|-----------------|---------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|--------------|--------------|--------------|
| ARC  | LOCATION       | בסררבכ נוסא<br>אריע                     | TLW<br>ANALYSIS | £U-239,240<br>ACTIVITY                                                                      | URBNIUM<br>(MICRO                       | Y JELC<br>IR*RE<br>MORK J | COU41<br>118 | ANAL MON     | <del>z</del> |
| !    |                | • • • • • • • • • • • • • • • • • • • • | •00             |                                                                                             |                                         |                           | 1            |              |              |
| 62   | CM- CS. C      | 8153                                    | œ               | .8840.16E 0                                                                                 |                                         | •                         | 20           | 3. EE        | 60           |
| !    |                |                                         | 138             | .16 40.03E 0                                                                                |                                         | ÷                         | 4 (          |              |              |
|      | 6.63           |                                         | æ               | .35 #0.03E 0                                                                                |                                         | ij                        | 2 C          |              | ပ္ပ          |
|      | 69.4           |                                         | 8               | .81 #0.09 E O                                                                               |                                         | 65.C                      | <b>&gt;</b>  |              | ဌ            |
|      | 11.0           |                                         | ຕ               | .0240.12E 0                                                                                 |                                         | ö                         | 3 C          |              | 00           |
|      |                |                                         | ထ               | .20 #0.13E D                                                                                |                                         | φ.                        | 3 C          |              | ၀၀           |
|      | -              |                                         | 8               | .2140.04E 0                                                                                 |                                         |                           | ¥            | •            | ဌ            |
|      | 1              |                                         | Ø               | .6240.03E 0                                                                                 |                                         | •                         | <b>3</b> C   | •            | 00           |
|      | -              |                                         | σ               | .81 40.14E 0                                                                                |                                         | "                         | <b>5</b> C   |              | 8            |
|      | 13.0           |                                         | 1391            | 6.0040.17E 03                                                                               |                                         | 5. 22                     | <b>3</b> 2   | 1.35-        | 2            |
|      | (11            | 8152                                    | 3               | .0710.06E 0                                                                                 |                                         | æ                         | ĭ            |              | ŝ            |
|      | CS             |                                         | 31              | .39 #0.06E C                                                                                |                                         | 41                        | <b>3</b> C   |              |              |
|      | S              |                                         | 31              | .98 to.13E 0                                                                                |                                         | E                         | 2 C          | 3. 16        | ဝ္ပ          |
|      |                |                                         | 31              | .00 40.07E 0                                                                                |                                         | <b>W</b> 1                | 3 C          | 2. TE        | 00           |
|      |                |                                         | 32              | 3 4C * 01 9 4 .                                                                             |                                         |                           | <b>5</b> C   | 2. 2E        | ပ္ပ          |
|      | 67.0           |                                         | ~               | .96 fü. 13E 0                                                                               | •                                       | 16.1                      | 3 C          | 1. EE        | င္ပ          |
|      |                |                                         | 32              | .31 40.08 E O                                                                               |                                         | ¥                         | <b>3</b> C   | 1.7          | 00           |
|      | C1.2           |                                         | 32              | 0 360.01039.                                                                                |                                         | •                         | 32           | 1. EE        | ္ပ           |
|      | 67.3           |                                         | 32              | .99 #0.05E D                                                                                |                                         | 61                        | 3.0          | <b>2.</b> €€ | 0            |
|      | C7.4           |                                         | 32              | .12 #0.06 E O                                                                               |                                         | Ġ.                        | <b>5</b> C   | 2. 5E        | 8            |
|      | C9.C-A         | ₩.                                      | 32              | .33 40.02E G                                                                                |                                         | 41                        | 2 C          | 1.8          | 9            |
|      | 6-0.53         | 60                                      | 32              | .2340.02E D                                                                                 |                                         | 4                         | <b>5</b> C   | 1.75         | 00           |
|      | 6              |                                         | 32              | .4340.03E 0                                                                                 |                                         | <b>w</b> 1                | 26           | 1. EE        | Ç            |
|      | 6              |                                         | 32              | .60 10.04E 0                                                                                |                                         | ~                         | 40           | <b>1.</b> %  | 00           |
|      |                |                                         | 4               | .15 to.02E 9                                                                                |                                         | S                         | <b>3</b> C   | <b>7.</b> €€ | S            |
|      | 65.4           |                                         | 33              | .90 to.05E 0                                                                                |                                         | 0                         | 36           | 1. 1E        | ဝ္ပ          |
|      | 11.0           |                                         | 4               | .74 #0.04E 0                                                                                |                                         | ~                         | <b>V</b>     | 3. CE        | 0            |
|      |                |                                         | 33              | .4240.02E 0                                                                                 |                                         | 0                         | Ų            | •            | 0            |
|      | 11.2           |                                         | 33              | .16 40.26 9                                                                                 |                                         | 40.5                      | <b>5</b> C   | <b>5.</b> 36 | 00           |

211

| 1                                       | į                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | ANAL /HON                       | 2.7.1.3.4.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.7.4.2.1.1.2.1.1.2.1.1.2.1.2.1.2.1.2.1.2.1 |
| 1 1 1 1 1                               | COUNT                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Y IELC<br>(R=RE<br>WORK)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | URAN IUM<br>(FICRO<br>GRAMS)    | 221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | FU-239,240<br>ACT1VITY<br>(OFP) | 9.6110.20E 04<br>2.37 t0.15E 04<br>2.94 t0.06E 04<br>2.17 t0.06E 04<br>7.72 t0.21E 03<br>2.50 t0.08E 03<br>3.09 t0.07E 02<br>1.82 t0.08E 05<br>1.82 t0.08E 05<br>1.25 t0.08E 05<br>1.25 t0.08E 05<br>1.25 t0.08E 05<br>1.25 t0.08E 03<br>1.14 t0.08E 03<br>1.14 t0.08E 03<br>1.14 t0.08E 03<br>1.14 t0.08E 03<br>1.14 t0.08E 03<br>1.14 t0.08E 03<br>1.15 t0.08E 03<br>1.16 t0.08E 03<br>1.17 t0.08E 03<br>1.18 t0.08E 03<br>1.18 t0.08E 03<br>1.19 t0.08E 03<br>1.19 t0.08E 03<br>1.11 t0.08E 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | TEM<br>ANALYSI S<br>NO.         | CDS-1335<br>1336<br>1337<br>1339<br>1339<br>1340<br>CAD-1286<br>CAD-951<br>CCD-770<br>CCF-771<br>771<br>772<br>CAD-956<br>CAD-956<br>CAD-956<br>CAD-956<br>CAD-957<br>771<br>772<br>771<br>772<br>773<br>774<br>773<br>774<br>774<br>777<br>777<br>777<br>777<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (CONTINUED)                             | 1LW<br>COLLEC TI ON<br>NO.      | 8152<br>8152<br>3258-1<br>4557-1<br>5163<br>3259-1<br>4562-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TABLE E.4 (CON                          | LOCATION                        | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TABL                                    | ARC                             | 79 ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

212

| TABI  | TABLE E.4 (CONTINUED)                   | NTINUED)          |                                      |                                 | 9<br>9<br>9<br>9<br>9        |                          | 1 1 1               |           |
|-------|-----------------------------------------|-------------------|--------------------------------------|---------------------------------|------------------------------|--------------------------|---------------------|-----------|
| A A C | LOCATION                                | 1LW<br>1LW<br>NO. | AXA                                  | 6U-239,240<br>ACTIVITY<br>(DFP) | URANIUM<br>IVICRO<br>GRAMS 1 | Y IELC<br>(R*KE<br>WORK) | COUNT<br>TIME       | ANAL /MON |
|       | • • • • • • • • • • • • • • • • • • • • |                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                 | ;<br>;<br>;<br>;<br>;<br>;   |                          |                     |           |
| •     | 018-4                                   | 4562-4            | -03                                  | .00 4C.01E 0                    |                              | 66.3                     | 7                   | •         |
|       | · w7                                    | <br> -            | CF-                                  | .7940.14E 0                     |                              |                          | 2 C C               | • 1E      |
|       | 0.30-1                                  | 4563-1            | 008 -000                             | .50 #0.06E 0                    |                              | 5.61                     | 3 C                 | ĥ         |
|       | 7                                       |                   |                                      | .86 #0.08 E O                   |                              | 71.6                     | 26                  | • ĉE      |
|       | , (**                                   | •                 | 802                                  | .4310.02E 0                     |                              | 27.3                     | 1300                | 끧         |
|       | · •                                     | · ~               | 803                                  | .86 to.11E 0                    |                              | 65.2                     | 20C                 | u.        |
|       |                                         | · 45              | CF-                                  |                                 |                              | 34.5                     | 20C                 | 35        |
|       | 030                                     | 4-516-A           | CAD-2200                             | .07 t0.03E 0                    |                              | 54.8                     | 3C                  |           |
|       | 0 4 0                                   |                   | ~                                    | .60 t0.26E 0                    | 010.                         | 72.5                     | 30 <b>2</b>         |           |
|       | 1 <b>4</b> 7                            | 4                 | 2147                                 | .5940.11E 0                     | 0.0155                       | 52.1                     | 300                 | Ĥ         |
|       | پ -                                     | . 43              | 2148                                 | .67 t0.08 E 0                   | .011                         | 14.8                     | <b>3</b> 00         | . (E      |
|       |                                         | ~                 | AF-2                                 | .5340.06E 0                     | 9                            | 78.2                     | 20C                 | 1         |
|       | 042-1                                   | 3300-1            | CAD- 963                             | .66 t0.04E 0                    |                              | 66.5                     | 3 C                 |           |
|       | ~                                       | 1                 |                                      | 1.9240.05E 02                   |                              | 66.7                     | 9,0                 | 1.56 00   |
|       | , (41                                   | · (**)            | 596                                  | .48 tú.24E 0                    |                              | 69.6                     | 30C                 |           |
|       | · •\$                                   | 4                 | 996                                  | .12 to.17E 0                    |                              | 15.2                     | 20C                 |           |
|       | · •0                                    | • •0              | 196                                  | . 10.13E 0                      |                              | 61.2                     | 40C                 |           |
|       | -                                       | ~                 | AF-                                  | .25 to.08 E O                   |                              | 57.1                     | 404                 | بق        |
|       | 042-1                                   | 4561-1            | 062 -033                             | .02 t0.17E 0                    |                              |                          | 3 C                 | ¥         |
|       | 7                                       |                   |                                      | .12 tO.02E 0                    |                              | 71.2                     | 30                  | . IE      |
|       | · «1                                    | •                 | 192                                  | .0740.035 0                     |                              |                          | ۶۲                  | . 3E      |
|       | <b>4</b>                                | •                 | 193                                  | .85 tO.09E 0                    |                              |                          | 20                  | Fi        |
|       |                                         |                   |                                      | .59 to.11E 0                    |                              | 15.0                     | 400                 | t         |
|       | 640                                     | 161               | 10-1                                 | . 59 to. 100 0                  |                              | 75.0                     | 3                   | • 2E      |
|       | 0.4-1                                   | 4515-1            | ٠,                                   | 0 360.0111.                     |                              |                          | 30 <b>C</b>         |           |
|       |                                         | ·                 |                                      | .15 10.03E 0                    |                              |                          | <b>366</b>          |           |
|       | , ~                                     |                   | 971                                  | .4110.22E 0                     |                              | 71.3                     | 30C                 | 36        |
|       | <b>.</b>                                | -\$               | 972                                  | .37 10. 18 0                    |                              | 52.7                     | <b>5</b> 0 <b>C</b> |           |
|       | 0                                       | ري. ۱             | 973                                  | .6910.16E 0                     |                              | 17.5                     | 1001                |           |
|       | ,                                       |                   |                                      |                                 |                              |                          |                     |           |

| TABL | TABLE E.4 (CONTINU | NTDNUED)     | # # # # # # # # # # # # # # # # # # # |                        |         |                 |             |                  |
|------|--------------------|--------------|---------------------------------------|------------------------|---------|-----------------|-------------|------------------|
| ARC  | ARC LOCATION       | COLLEC TI ON | TLW<br>ANALYSIS                       | FU-239,240<br>ACTIVITY | URANIUM | Y IELE<br>[R*RE | COUNT       | ANAL /HON        |
| ;    |                    | NO.          |                                       | (DPF)                  | GRAMS ) | WORK 1          | 1           |                  |
| -    | 2-550              | 53           | CAF- 974                              | .22                    |         | 17.2            | 1000        |                  |
| :    | 054-1              | 4558-1       | CCD- 715                              | .48 +0.06              |         | 71.5            | 20          | , ii             |
|      | ~                  |              |                                       | .41 #0.24E             |         | 66.8            | 3 C         | ٠ <u>.</u>       |
|      | m                  | m            | 111                                   | 4.82 to.12E 02         |         | <u>-</u>        | )<br>)<br>) |                  |
|      | 4                  | 4            | 778                                   | .81 #0.20E             |         | 34.0            | <b>5</b> 00 | E                |
|      | 'n                 | <b>v</b> n   |                                       | .39 to.06E             |         | *               | 20C         | ۳.               |
|      | 0 6 0              | 5164         | C TD-1289                             | .04 40.03€             |         | •               | <b>5</b> C  | . 3E             |
|      | 046-1              | 4559-1       |                                       | .53 t0.04E             |         |                 | ) <b>?</b>  | W                |
|      | ~                  |              | 781                                   | .95 40.08 E            |         | ~               | 10C         | . ff             |
|      | m                  | m            | 782                                   | .87 tO. 26E            |         |                 | <b>50</b> 6 |                  |
|      | *                  | 4            | 783                                   | 10.10E                 |         | £ . 5           | <b>302</b>  | #                |
|      | v                  | S            | CF-                                   | •0•                    |         |                 | 3CC         | • (E-            |
|      | 1-990              | 4578-1       | CA0- 987                              | .39 tO. 15E            |         |                 | <b>5</b> C  | • <del>(</del> E |
|      | ~                  | ~            | 988                                   | 7.76 to.27E 01         |         | 67.5            | <u>5</u>    | 1.4€ 00          |
|      | m                  | m            | 686                                   | 341.0116.              |         |                 | 3CC         | . (f.            |
|      | 4                  | 4            | 990                                   | .7010.16               |         | •               | 400         | E                |
|      | ¥                  | 49           | 166                                   | .71 tO. 10E            | •       | 0               | 20C         | • <u>i</u> E-    |
|      | <b>~</b>           | ~            |                                       | .38 to . 09 E          |         |                 | 400         | , îŧ             |
|      | 012                | 5167         | C 10-1291                             | . 93 to. 14E           |         |                 | <b>5</b>    | #                |
|      | 018-1              | 4565-1       |                                       | .54 10.03E             |         | •               |             | ب <u>ن</u>       |
|      | ~                  | ~            | 806                                   | .30 to.07£             |         | •               | ŝ           | Ψ.               |
|      | m                  | m            | 807                                   | .36 tO.26E             |         | •               | Ç           | ٠.<br>بو         |
|      | 4                  | 4            | 808                                   | .34 10.02E             |         |                 | 300         | Æ                |
|      | 'n                 | 'n           |                                       | 3 90 · 01 96 ·         |         |                 | J           | ¥.               |
|      | 078-1              | 1-6254       | CAD- 993                              | .26 t0.04E             |         | •               | 3<br>2      | • <u>I</u> E     |
|      | ~                  | ~            | 466                                   | 2 40.                  |         |                 | 100         |                  |
|      | m                  | •            | 566                                   | 380.0141.              |         | 57.6            | 1000        |                  |
|      | <b>.</b>           | •            | 966                                   | .2510.04E              |         |                 | 1001        |                  |
|      | ¥                  | ų            | 166                                   | .3510.16€              |         |                 | 704         |                  |

214 CONFIDENTIAL

| ARC. | ARC LOCATION  | ורא<br>כסררבכ 11 מא<br>NO• | ANALYSES<br>NO. | FU-239,240<br>ACTIVITY<br>(DFP) | UPARIUM<br>IVICRO<br>GRANSI | Y IELE<br>IRAR<br>WORK I | COURT<br>11HE       | Anal Mon   |
|------|---------------|----------------------------|-----------------|---------------------------------|-----------------------------|--------------------------|---------------------|------------|
| •    | 0.18-7        | 4                          |                 | 1.7940.066.01                   |                             | 3.8.8                    | 466                 | 1.16       |
| r    | . 790         | 157                        | 7               | 46640.058                       |                             | 78.0                     |                     | 2. !E      |
|      | 050-1         | 4566-1                     |                 | .05E                            |                             | 41.7                     | 35                  | 3. 7E      |
|      | . ~           |                            |                 | .38 10.02E                      |                             | 71.3                     |                     | 1. CE      |
|      | . (4)         | · M                        | 815             | .13 to.08 E                     |                             | 16.2                     | <b>.</b>            | 3. 4       |
|      | •             | •                          | 613             | .75 #0.05E                      |                             | 14.0                     | <u>ي</u>            | 2.16       |
|      | · vn          | •                          |                 | .98 tO.09 E                     |                             | 64.0                     | - <del>-</del>      | 1 · 1E     |
|      | 050-1         | 4517-1                     | CAD- 981        | .47 40.12E                      |                             | ۲۰۰۲                     | رب<br>د             | 4. 28      |
|      | ~             | . •                        | Q.              | 1.78 40.05 € 02                 |                             | 67.6                     | <u>ب</u>            | <u>.</u> . |
|      | m             | •                          | 983             | . 04E                           |                             | 70.6                     | <b>4</b>            | ٠          |
|      | • <b>•</b> \$ | •                          | 486             | . 22 E                          |                             | 12.1                     | <b>5</b> 0 <b>0</b> |            |
|      | •             | · •                        | 985             | .01 10.48 E                     |                             | ¿c.s                     | 30 <b>2</b>         | •          |
|      | · <b>-</b> -  | _                          | ο.              | .07 #0.09 E                     |                             | 24.7                     | 1001                | ¥:         |
|      | . 4           |                            | -12             | .07 #0.09E                      |                             | 60.3                     | 30                  | ٠          |
|      | 2.2           | 4-664-1                    | -21             | .58 to. 19E                     | 3.64                        | 31.6                     | 9                   | 1.38       |
|      | 162-3         |                            | 212             | .08 10. 128                     | 1.42                        | 12.1                     | 100                 |            |
|      | · •           | •                          | 7               | .03 (0.03 €                     | €.                          | 11.6                     | 166                 | 2. E       |
|      | · <b>•</b> 7  | · •••                      | ŗ               | .03 40.07 8                     | 5.69                        | 3.55                     | ည်<br><b>က</b>      | 1. 4E      |
|      | 108           | \$162-A                    | ~               | .37 to.33E                      | 2,76*                       | 24.0                     | ) <del>+</del>      |            |
|      | 1 14- 1       | 4560-1                     | ,               | .35 to.05E                      |                             | 40.4                     | <b>3</b> C          |            |
|      |               |                            | _               | .92 10.08 E                     |                             | 71.7                     | <b>,</b>            | 4. (E CC   |
|      | 1 74          |                            | 187             | .18 10.04 E                     |                             |                          | )<br>)<br>(         | ¥          |
|      | •             | •                          | 788             | .1340.20E                       |                             |                          | 306                 | . ff       |
|      | •             | · <b>w</b>                 | CF- 1           | .64 to.07 E                     |                             |                          | 308                 | ¥          |
|      | 1 1 1 4 - 1   | 1-9157                     | CAD- 975        | .3740.216                       |                             |                          | 36                  | , tf       |
|      |               |                            | 926             | .16 40.03 €                     |                             | 55.4                     | 100                 | ¥          |
|      | , ~           | , ~                        | 977             | .9740.23E                       |                             | 10.7                     | 30°C                |            |
|      | <b>¬</b> ≺    | •                          | 920             | 4940.216                        |                             | 5.91                     | 100                 | . ĭf-      |
|      |               |                            |                 | ֡                               |                             |                          |                     |            |

215

| TAB | TABLE E.4 (CC  | (CONTINUED) |                        |                                 |                               |                          | 1                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                        |   |
|-----|----------------|-------------|------------------------|---------------------------------|-------------------------------|--------------------------|---------------------|--------------------------------------------------------------------------------|---|
| ARC | LOCATION       | COLLE       | TEN<br>JWALYSIS<br>NC. | FU-239,240<br>ACTIVITY<br>(GFF) | URBNIUM<br>(P. ICRO<br>GRAMS) | Y JELC<br>(R*RE<br>WORK) | COUNT<br>TIME       | ANAL MON                                                                       | 4 |
|     |                |             |                        | 0 3 70 0 7 10                   |                               | 4 0 4                    | J 0 7               | 77                                                                             |   |
| <   | - I C I -      | ` .         | 1 20                   | 0 307.00.00                     |                               |                          | ) C                 | ֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֡֓֓֓֡֓֓֡֓֓֓֡֝֡֓֡֓֡֓֡֝֡֓֡֓֡֝֡֓֡֡֡֝֡֡֡֡֓֡֡֝֡֡֡֝֡֡֡֡֡֡ |   |
| Œ   | 125            | 3267-1      | C 10-1690              |                                 |                               | 70.7                     | 7 7                 | 4. 7E CO                                                                       |   |
| 3   |                | 139         | -12                    | .86 ±0.03 € 0                   |                               |                          | 100                 | <u>.</u>                                                                       |   |
|     | 068            | 2           | -139                   | .0240.146 0                     |                               | 46.4                     | 3 C                 | 36                                                                             |   |
|     | C 5 2          | <u> </u>    | -171                   | .61 #0.06E 0                    |                               |                          | <b>30</b> 0         | . 4E                                                                           |   |
|     | C 5 2          | 2           | -139                   | .22 #0.07E 0                    |                               |                          | 3.5                 | H                                                                              |   |
|     | 650            |             | _                      | .0040.05E 0                     |                               |                          | 36                  | • 2E                                                                           |   |
|     | 100            |             | 1395                   | .03 40.02 60                    |                               | Š                        | ) ć                 | <u> </u>                                                                       |   |
|     | 10.45<br>10.45 |             | 1396                   | .03 40.20 E 0                   |                               | ۲.                       | <b>5</b> C          | . 3E                                                                           |   |
|     | 108            |             | 1397                   | .15 to .08 E O                  |                               | 26.2                     | <b>)</b> }          | • (£-                                                                          |   |
| 0   | 012            | 27          | C SA-1478              | 0 361.018E 0                    |                               | യ                        | 20C                 | 1.36                                                                           |   |
|     | 028-1          | 5279-1      |                        | .50 10.116                      |                               | 10.e                     | <b>30C</b>          | 2. 1E                                                                          |   |
|     | ~              |             | 1479                   | .44 40.20E 0                    |                               | 4                        | <b>300</b>          | . 4E                                                                           |   |
|     | m              | •           | 1480                   | .6710,318 0                     |                               | 80.5                     | <b>308</b>          | 5. 16                                                                          |   |
|     | 4              | •           | 1481                   | .62 40. 20 E                    |                               | 78.3                     | 30 <b>C</b>         | 2. EE                                                                          |   |
|     | 'n             | 'n          | 1482                   | .76 #1                          |                               | 82.1                     | 30 <b>C</b>         | 7.88-                                                                          |   |
|     | •              | •0          | 1483                   | .98 11. 10 6-0                  |                               | _                        | 308                 | 8.                                                                             |   |
|     | ~              | 1           | 1584                   | .02 t0.99 E-0                   |                               | ÷                        | 332                 |                                                                                |   |
|     | •              | æ           | 1485                   | .43 t0.87E                      |                               | ;                        | 30 <b>2</b>         |                                                                                |   |
|     | <b>o</b>       | 5           | 1486                   | .44 *1.12E                      |                               | •                        | <b>3</b> 0 <b>2</b> | - 46-                                                                          |   |
|     | 10             | 01          | 1487                   | .83 40.37E 0                    |                               |                          | 30 <b>C</b>         | 7. EE                                                                          |   |
|     | 11             | 7.4         | 2155                   | .23 #0.07E 0                    |                               | Ç                        | <b>30</b> 0         | 5. (E                                                                          |   |
|     | 30             | 861         | 05-1                   | .08 to.07 E O                   |                               | 36.0                     | 300                 | . CE                                                                           |   |
|     | 034-1          | 4554-1      | CC0-1688               | .45 tO.04 E O                   |                               | 22.1                     | <b>4</b>            | . JE                                                                           |   |
|     | ~              |             | 1689                   | .6040.62E 0                     |                               | Φ                        | <u>ک</u>            | . E.                                                                           |   |
|     | 6              | 6           | 1690                   | .9710.2                         |                               |                          | 3C C                | 10-37-1                                                                        |   |
|     | 4              | •           | 1691                   | .2240.02E 0                     |                               | *                        | ¥                   | £.                                                                             |   |
|     | Ś              | S           | CCF-1692               | .26 11.13 6-0                   |                               | ¥                        | <b>300</b>          | 6. (E-Ck                                                                       |   |
|     |                |             |                        |                                 |                               |                          |                     |                                                                                |   |

216

| (CONTINUED) |
|-------------|
| TABLE E.4   |

| ANAL /MON                       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COUNT<br>TIME                   |                                                                                                                                                                                                                                                                                                                                                                                    |
| Y IELC<br>(R=RE<br>WORK)        |                                                                                                                                                                                                                                                                                                                                                                                    |
| UR AN IUM<br>(P. ICRO<br>GRAMS) |                                                                                                                                                                                                                                                                                                                                                                                    |
| FU-239,240<br>ACTIVITY<br>(0FP) | 0.90#1.81E-01<br>1.01#0.03E 03<br>6.87#0.36E 00<br>8.80#0.76E-02<br>8.80#0.17E 00<br>0.00#0.17E 00<br>8.55#5.70E-02<br>2.25#0.17E 00<br>8.15#0.41E 00<br>8.56#0.43E 00<br>1.33#0.04E 01<br>4.79#0.12E 02<br>1.51!0.05E 03<br>1.21!0.05E 03<br>1.21#0.05E 03<br>1.21#0.05E 03<br>1.21#0.05E 03<br>1.38#0.05E 03<br>1.46#0.21E 00<br>8.99#1.82E-01<br>8.99#1.82E-01<br>8.99#1.82E-01 |
| TEM<br>TEM<br>NO.               | C SA-2156<br>C TA-1717<br>C SA-1488<br>1490<br>1491<br>1492<br>1493<br>1494<br>1495<br>1495<br>1796<br>1781<br>1781<br>1781<br>1781<br>1781<br>1781<br>1781<br>178                                                                                                                                                                                                                 |
| 16 H COLLEC 71 ON NO.           | 4151-11<br>5277-1<br>5277-1<br>2<br>3<br>4<br>4<br>8163<br>8163<br>8163<br>8163                                                                                                                                                                                                                                                                                                    |
| LOCATION                        | 625<br>625<br>626<br>626<br>626<br>627<br>627<br>627<br>627<br>627                                                                                                                                                                                                                                                                                                                 |
| ARC                             | C 4.                                                                                                                                                                                                                                                                                                                                                                               |

2. (E-01 1. 2E-02 2. (E-03 2. (E-03 2. (E-03 2. (E-03 1. (E-03 1. (E-03 1. (E-03 2.66 00 2.16 00 1.96 00 4.66-01 7.66-01 220 3. (6-01 1. CE-COUNT TIME Y TEL E I R R R E WORK ) URANIUM 17 ICRO GRANSI 2.0640.06E 5.1340.20E 1.2940.02E 5.3140.15E 1.9540.06E 2.3340.07E 3.0840.10E 4.6040.17E 8.22 to.29E 7.36 t0.20E 1.06 t0.02E 1.78 t0.05E 1.15 #0.02E 2.09 #0.03E 3.52 #0.12E 1.96 #0.05E 9.65 #0.26E 4.9910.16E 4.5510.08E 5.4410.11E 1.91 #0.06 E 1.07 #0.02E 4.84 ±0.14E 3.87 #0.12E 1.9140.06 2.66 tO. 13E FU-239,240 ACTIVITY (DFF) TLH ANALYSIS NO. CD S-1789 TLW COLLECTION 4 693-1 TABLE E.4 (CONTINUED) 8163 ARC LOCATION 066-2 1-9:0 052-1 0.00-1 1-510 0 58-1 4

218

| TABI | TABLE E.4 (CONTINUE)                  | NTINUED) |           |                        |         | 1               | 1                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|------|---------------------------------------|----------|-----------|------------------------|---------|-----------------|---------------------|-----------------------------------------|
| ARC  | LOCATION                              | 1LW      | ANALYSIS  | FU-239,240<br>ACTIVITY | URANIUM | Y JELC<br>(R*RE | COU'17<br>TIME      | ANAL MON                                |
|      | * * * * * * * * * * * * * * * * * * * | : . !    | CN        | (0 6 4)                | GRAMS ) | ORX             |                     |                                         |
| u    | 052-4                                 | 8163     | CD S-1813 | .84 #0.21E C           |         | 22.1            | 306                 | 6. EE C2                                |
| •    | <b>4</b>                              | ,        | 1814      | 6140.                  |         | 3.55            | 100                 |                                         |
|      | 162                                   | 5        | C 1A-1710 | .77 #0.12E 0           |         | 57.6            | 100                 | 3. fE-                                  |
|      | 104-1                                 | 8163     | CDS-1815  | .75 40.09E 0           |         | 9.99            | 100                 | . EE 0                                  |
|      | 2                                     | )        | 1816      | .3640.18E 0            |         | 10.1            | <b>3</b> CC         |                                         |
|      | ı m                                   |          | 1817      | .27 #0.26E 0           |         | 12.2            | <b>3</b> CC         |                                         |
|      | •                                     |          | 1818      | .82 #0.23E 0           |         | _               | <b>3</b> CC         |                                         |
|      | · <b>6</b> 4                          |          | 1819      | 0 390.0169.            |         | 16.4            | 2                   |                                         |
| c    | 050                                   | ·        | 1778      | .70 to.17E 0           |         | 4.4             | )<br>3<br>8         | 3. 7E 01                                |
| . 1  | 0.50                                  | 5036     | IA-       | .05 #0.08 E O          |         | •               | γ                   | 2.4E CO                                 |
| •    | 0 20-1                                | 38-      | CC0-1668  | .48 tO.04E 0           |         | ~               | <b>3</b> 0 <b>2</b> | 4. (E CO                                |
|      | . ~                                   | ١        | 1         | 26 #0.04E 0            |         | •               | 30C                 | #: ·                                    |
|      | ı m                                   | m        | 1670      | .6940.08E 0            |         |                 | <b>3</b> CC         | 3:                                      |
|      | •                                     | •        | 1671      | .31 to.08 E 0          |         | 69.6            | <b>3</b> CC         | . 2E                                    |
|      | . 41                                  | · #1     | CF-1      | .00 #0. 29 E O         |         | •               | ž                   | 1. CE- C2                               |
| 7    | 0.66-1                                | 4514-1   | CC0-1683  | 1040                   |         | •               | <b>3</b> 00         | . Æ                                     |
| ,    |                                       |          | -         | .06 #0.15E 0           |         | 0               | <b>3</b> 00         | #:                                      |
|      | 1 (41)                                | m        | 1685      | .81 to.09E 0           |         |                 | 300                 | 1.36 60                                 |
|      | •                                     | •        | ~         | .77 #0.04E 0           |         | 94.6            | 200                 | • 2E                                    |
|      | •                                     | •        | CCF-1687  | .9940.08E 0            |         | 57.5            | <b>30</b> 0         | ¥.                                      |
|      | 050                                   |          | 7         | .81 +0.16E 0           |         | 4.55            | 231                 | A.                                      |
| ¥    | 0.16                                  |          |           | .9440.04E 0            |         | 42.1            | )<br>)<br>          | 3.66                                    |
| :    | 030                                   |          | 1713      | .01 #0.14E 0           |         | ę.              | <b>3</b> 00         |                                         |
| ,    | 0 6                                   |          | COS-1779  | .11 to.09 E 0          |         | ċ               | 100                 | 2. CE-02                                |
|      | 0 60                                  |          | C TA-1312 | 82 40.06 E O           |         | ~               | 400                 | 쁘                                       |
|      | 9 9 0                                 |          | 1314      | .57 to. 18E 0          |         | æ               | <u>ي</u>            | - 36 -                                  |
|      | 9.0                                   | 5115     | C 10-1283 | .86 +0                 |         | 19.5            | 30                  | •                                       |
|      | 0.66-1                                | 1        | 092 -000  | 11 to . 38 E O         |         | 34.4            | 704                 | . Œ                                     |
|      | ~                                     |          | 192       | .00 tu.16E             |         | 29.6            | 704                 | 1. 2E 00                                |

| TABL    | TABLE E.4 (CON | (CONTINUED)       |                 |                        |        |                 | 1                   |            | į  |
|---------|----------------|-------------------|-----------------|------------------------|--------|-----------------|---------------------|------------|----|
| ARC     | LOCATION       | 11 P COLLEC 11 ON | TEH<br>ANALYSIS | FU-239,240<br>ACTIVITY | CPICAD | Y IELE<br>(R*RE | COUNT<br>TIME       | ANAL MON   |    |
|         |                | NO.               | NO.             | (440)                  | / I    | έ i             |                     |            | į  |
| _       | 6-30           | £ -7757           | CCD- 762        | .72 #0.11              |        | 44.6            | 40C                 | . 1E       | 0  |
| ,       | **             | 4                 |                 | .15 #0.05E 0           |        | 24.6            | 400                 | . CE-      | 5  |
|         | r er           | · ufi             | ı               | .64 #0.35E             |        | 28.€            | 4CC                 | Ē.         | 5  |
|         | 050            |                   | C 14-1714       | 34 10.33E              |        | 40-6            | <b>3</b> 0 <b>c</b> | 8-46-      | _  |
|         | 058-1          | 4                 | •               | -80 +0.50 E-           |        | 15.2            | <b>7</b> 00         | E          | 8  |
|         | . ~            | •                 |                 | .61 #0.32E             |        | 9-19            | <b>3</b> 00         | 6. CE-01   | _  |
|         | l eu           | m                 | 767             |                        |        | 45.6            | <b>3</b> CC         | . CE-      | ត  |
|         | •              | ₹                 | 768             | .58 t0.18E             |        | 78.1            | <b>3</b> 00         | E          | ~  |
|         | · <b>4</b> 17  | · •               | CCF- 769        | .43 #0.22E             |        | 74.3            | )<br>01             | 3. CE-     | ~  |
|         | 100            | 117               | -12             | 0.00 #0.226 00         |        | 64.8            | 40                  | E          | 0  |
|         | 102            | 5112              | C 1A-1313       | .44 t0.20E             |        |                 | <b>30</b> 6         | 3. (E-     | 50 |
|         | 114            | 5107              |                 | .9043.50E-             |        | ċ               | ¥                   |            | 8  |
| 884     | L 2, P 13      | 5370              | CB S-2037       | .16 #0.03E             |        | 78.5            | <b>4</b>            | 7. 2E - 01 | _  |
| ;<br>!  | L 3, P 2       |                   | 7               | .14 #0.02E             |        | ;               | <b>3</b> C          |            |    |
|         | 1 3, P.1       |                   | 2039            | .28 +0.02E             |        | 68.2            | 4                   | ų.         | ဝ  |
| E1C-128 | 128-5          | NCNE              | C SF - 1987     | .0240.03E              | 94.1   | 28.1            | S                   | H          | C  |
| )       | 4              | •                 | 1988            | .81 #0.05E             | 2      | 37.2            |                     | æ          | 0  |
|         | ~              |                   | 1989            | .2240.03               | 24.9   |                 | 36                  |            | 8  |
|         | •              |                   | 1990            | .9740.                 | 4.5    | •               | 7                   | Į,         | 0  |
|         | Ç              |                   | 1661            | .77 #0. LdE            | 1.30   | ÷               | <b>3</b> C          | ų          | Q  |
|         | 10             | •                 | 1992            | .67 40,038             | 55.5   | Š               | Ş                   | ۳,         | 8  |
|         | 1              |                   | 1993            | .05 tO. 15E            | $\sim$ | e;              |                     | ᆵ          | _  |
|         | 13-5           |                   | 1994            | .09 t0.05 E            | 160.   | 27.5            | <b>)</b> 4          | 1.56 01    | _  |
|         | •              |                   | 1995            | .57 to. 13E            | •      | <u>.</u>        | <u>پر</u>           |            |    |
|         | -              |                   | 1996            | .66 #0.07 E            | 5      | 50.3            | ¥                   | 2. IE 01   | _  |
|         | •              |                   | 1997            | .97 to. 06E            | Q.     | 26.8            | 36                  |            |    |
|         | · (J*          |                   | 1998            | .0310.22E              | 101.   | *               | 30                  | 8. fE 0    | 8  |
|         | 10             |                   | 6661            | .07 tO.11E             | õ      |                 | ž                   | • 4E       | 0  |
|         | =              |                   | 2000            | .9940.31E              | 247.   | 21.6            | 40                  | 1.2ECO     | 0  |

220

## CONFIDENTIAL

| TABLE E.4 (CONTINUED) | ONTINUED)      |                   |                                 |                              |                             |             | 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |   |
|-----------------------|----------------|-------------------|---------------------------------|------------------------------|-----------------------------|-------------|-----------------------------------------|---|
| ARC LOCATION          | COLLECTION NO. | TLW<br>TLW<br>NC. | FU-239,240<br>ACTIVITY<br>(DFM) | URAN IUM<br>Fricro<br>Grams) | Y IEL C<br>I R=RE<br>MORK I | COUNT       | ANAL JHON                               | 1 |
|                       |                |                   |                                 | •                            | •                           |             | ų                                       |   |
| E 1C-14A- 5           | NONE           | C SF - 2 GOB      | . 83 4U.USE C                   | 9                            | 2 4 5                       | ) (         | ,                                       |   |
| ~                     |                | 2010              | .07 40.20E 0                    | •                            | 26.9                        | 26          | پ                                       |   |
| w w                   |                | 2009              | 6.44 #0.14E 05                  | 896.                         | 40.                         | 40          | 'n                                      |   |
|                       |                | 2011              | .13 #0.07E                      | 112.                         | 31.5                        | 96          | #                                       |   |
| , (                   | •              | 2012              | 7                               | 51.9                         | 68.6                        | <b>Y</b>    | 1, 25 01                                |   |
| . 5                   |                | 2013              | .97 #0.14E                      | 37.6                         | 28.5                        | 40          | E.                                      |   |
| 2 =                   |                | 2014              | .24 t0.03E                      |                              | 15.0                        | 36          | 3                                       |   |
| HOB DM-C1-1           | 5005-1         | CCD- 875          | 0                               |                              | 52.6                        | <b>3</b> CC | :                                       |   |
|                       | 7              |                   | .00 #0.                         |                              | 28.5                        | 206         | 1. (E                                   |   |
| <i>•</i> •••          | . m            | 877               | .0048.00E-0                     |                              | 56.7                        | <b>20</b> € | 1. (E                                   |   |
| •                     | •              | 878               | .2041.20E-0                     |                              | 39.4                        | <b>300</b>  |                                         |   |
| •                     | - 47           | CF-               | .00 19.00 E-0                   |                              | 50.3                        | <b>300</b>  | 1. CE                                   |   |
| C2-1                  | 5006-1         | CCD- 880          | .20 #1. 20 E-0                  |                              | 16.8                        | <b>30</b> C |                                         |   |
| 2                     | 7              | 1                 | .1041.                          |                              | 45.5                        | 20C         | CA 1. CE 00                             |   |
| ,                     | ı (M           | 882               | .5040.                          |                              | 5 to 0                      | <b>308</b>  | 1. CE                                   |   |
| •                     | •              | 883               | .3340.                          |                              | 46.1                        | 2C C        | 2. 2E                                   |   |
| •                     | ·              |                   | 2011.30E-                       |                              | 62.2                        | <b>307</b>  | 2. SE-01                                |   |
| C3-1                  | 5000-1         | CCD- 855          | .71 40.                         |                              | 66.7                        | 4 C C       | 3.5                                     |   |
| ~                     |                |                   |                                 |                              | 43.2                        | <b>4</b> CC | 1. CE                                   |   |
|                       | 60             | 857               | 1.2040.70E-01                   |                              | 64.6                        | 400         |                                         |   |
| •                     | •              | 858               |                                 |                              | 59.6                        | 400         | 1. Œ                                    |   |
| · 161                 | · ••           |                   | .2041.                          |                              | 27.5                        | 400         | <b>1.</b> CE                            |   |
| 1-73                  | 5002-1         | CCD- 860          | .40 40.                         |                              | 34°C                        | 400         |                                         |   |
|                       | 7              |                   | .00 46 .00E                     |                              | 74.5                        | )<br>•      |                                         |   |
|                       | •              | 962               | 2.70 #1.50 E-01                 |                              | £1.5                        | ) C C       | 1. CE                                   |   |
| •                     | •              | 863               | .9041.70                        |                              | 55.1                        | 100         | CA 2. 5E-01                             |   |
| *                     | · w            | CCF- 864          | .00 43.                         |                              | 5¢.2                        | )<br>}      | ۲. (۴                                   |   |
| 1-53                  | 1-4008         | CCD- 870          | 1.80 to.08E 01                  |                              | 31.9                        | 100         | 2. 3E CO                                |   |
| •                     | •              | 1                 | 5011.60                         |                              | 35.0                        | 3CC         | CA 1. (E 00                             |   |

NEW DATA THIS REPORT

| TABİ | TABLE E.4 (CO        | (CONTINUED)                             |                                       |                                 |                                         |                          |               | 1             | 1                |          |
|------|----------------------|-----------------------------------------|---------------------------------------|---------------------------------|-----------------------------------------|--------------------------|---------------|---------------|------------------|----------|
| A&C  | LOCATION             | TLW<br>COLLECTION<br>NO.                | TLW<br>ANALYSI S<br>NO.               | FU-239,240<br>ACTIVITY<br>(CFP) | URAN JUM<br>(P. J.CRO<br>GRAMS)         | Y JELC<br>(R=RE<br>WORK) | COUNT<br>TIME | Ž<br><b>4</b> | ANAL /MON        |          |
| !    |                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • • • • • • • • • • • • • • • • • • • |                                 | * • • • • • • • • • • • • • • • • • • • |                          | ,<br>,<br>,   |               | •<br>•<br>•<br>• | !        |
| M 08 | DM- C5-3             | 5.04-3                                  | CC3- 872                              | 9.40 #1.60 E-01                 |                                         | 26.2                     | 4CC           | 3             | 1.68 00          | 0        |
|      |                      | 4                                       |                                       | .9041.906-0                     |                                         | 31.5                     | <b>5</b> 00   | 5             | 4                | _        |
|      | •                    | 'n                                      | CCF- 874                              | 6.00 #9.00 E-02                 |                                         | 64.4                     | <b>30</b> 2   | 5             |                  | a        |
|      | . <del>- 1</del> - 1 | 5CC7-1                                  | CCD- 885                              | .90 #1 . 2GE                    |                                         | •                        | 400           |               | •                | _        |
|      | ~                    | 7                                       |                                       | .22 #0                          |                                         | 50.5                     | 20C           | ರ             |                  | 0        |
|      | · m                  | 'n                                      | 887                                   | .00 #0. 10 E                    |                                         | •                        | <b>5</b> 00   | 5             | 1. (E 00         | 0        |
|      | •                    | 4                                       | 888                                   | .40 #1.50E                      |                                         | 47.6                     | <b>30</b> 0   | చ             | 1. CE 00         | 0        |
|      | · 44                 | · <b>5</b> 7                            | ı                                     | .20 #1.40 E-0                   |                                         | £°. 0,                   | <b>30</b> 0   | ₹             | <b>.</b> . ∈ Ç   | ø        |
|      | C 3- 1               | 5003-1                                  | -03                                   | .93 40 . 17E 0                  |                                         | 72.5                     | 20C           |               | 2.46 01          | <b>,</b> |
|      |                      | 7                                       | 1                                     | .54 40.                         |                                         | 83.5                     | 20C           |               |                  | 0        |
|      | , m                  | ım                                      | 867                                   | .7010.11E G                     |                                         | 82.6                     | 4C C          |               | 2, SE 00         | 0        |
|      | •                    | *                                       | 868                                   | .52 t0.28E                      |                                         | 56.5                     | 704           |               |                  | 0        |
|      | · w                  | · vn                                    | CCF- 869                              | 9 40. 19 E                      |                                         | 50.4                     | <b>50C</b>    |               |                  | _        |
|      | CB-1                 | 5014-1                                  | CAD-1047                              |                                 |                                         | 69.1                     | 3 C           |               |                  | 0        |
|      | ~                    | 7                                       | -                                     | ш                               |                                         |                          | 100           |               |                  | _        |
|      | · m                  | •                                       | 1049                                  | .00 to.07E                      |                                         | 34.6                     | <b>308</b>    |               | 1                | _        |
|      | **                   | *                                       | 1 050                                 | 4                               |                                         | 61<br>61<br>61           | 300           |               |                  | _        |
|      | •                    | Û                                       | 1021                                  | 10.26E                          |                                         | 70.1                     |               |               |                  | ~        |
|      | _                    | ٢                                       | 7                                     | u                               |                                         | 8 8 a                    |               | \$            | 1. EE 00         | 0        |
|      | 1-11                 | 5cc1-1                                  | CCD-1698                              |                                 |                                         |                          | 4             |               |                  | 0        |
|      | 7                    | ~                                       | 1699                                  | 1.48 to.05E 02                  |                                         | 9.48                     | )<br>)<br>(   |               | 2.76 0.          | o        |
|      | · M                  | m                                       | 1 700                                 | 1.97 to.07 € 01                 |                                         | 63.¢                     | 30E           |               |                  | _        |
|      | •                    | 4                                       | 1011                                  | .49 to. 18 E                    |                                         | 39.6                     | 300           |               |                  | 0        |
|      | · <b>s</b> n         | 'n                                      | 7                                     | 2.66 t0.23£ 00                  |                                         |                          | <b>300</b>    |               | 1                | _        |
|      | 15-1                 | 4599-1                                  | CCD- 850                              | .23 +0.03 8                     |                                         | 81.5                     | 30            |               |                  | o        |
|      | 7                    | 7                                       |                                       | .58 #0.03E                      |                                         |                          | e<br>C        |               |                  | 0        |
|      | (A)                  | •                                       | 852                                   | 7.08 to.45E 00                  |                                         | 5.42                     | <b>50C</b>    |               | 1. EE 00         | 0        |
|      | •                    | •                                       | 853                                   | .17 #0.27E                      |                                         | €1.4                     | <b>30</b> 0   | చ             | 3. (E C          | 0        |
|      | · vo                 | v                                       | CCF- 854                              | 9.1011.408-01                   |                                         | A. A.                    | 3 C C         | 3             | 1. (E Q          | 0        |

|   | • |  |  |
|---|---|--|--|
|   |   |  |  |
| • | • |  |  |
|   |   |  |  |

| TAB        | TABLE E.4 (CONTINU                      | NTINUED)          |           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                           | 1                   |             | ; |
|------------|-----------------------------------------|-------------------|-----------|---------------------------------------|-----------------------------------------|---------------------------|---------------------|-------------|---|
| ARC        | LOCATION                                | TLW<br>COLLECTION | ANALYSIS  | FU-239,240<br>ACTIVITY                | URBN IUM<br>I F I CRO<br>GR AMS 1       | Y 1ELC<br>(R*RE<br>MORK 1 | COUNT<br>TIME       | ANAL JHON   |   |
|            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   | !         |                                       |                                         |                           |                     |             | 1 |
| <b>8</b> 0 | DM-16-1                                 | 5009-1            | 068 -023  | .34 #0.                               |                                         | 15.6                      | 20                  | .16 0       | 0 |
|            | 7                                       |                   | 68        | 5 #0.03                               |                                         | 75.5                      | 100                 | 1. EE 0     | 0 |
|            | , m                                     | ·M                |           | .65 #0.                               |                                         | 3.92                      | 400                 |             |   |
|            | •                                       | 4                 |           | .70 #1. 70E-                          |                                         | 40.2                      | <b>30</b> 0         | . CE        | 9 |
|            | 'n                                      | ĸ                 | 8         | 0.60 #1.80 E-01                       |                                         | 29.6                      | <b>307</b>          | CA 1. (E 00 | 0 |
|            | 18-11-1                                 | 5023-1            | CCD-1703  | .47 #0                                |                                         | 46.1                      | <b>30</b> 2         |             | _ |
|            |                                         |                   | 17        | 0 # 0                                 |                                         | 36.2                      | 30C                 |             |   |
|            | <u> </u>                                | •                 | 1705      | 1.18 #0.58E-01                        |                                         | 51.5                      | 300                 | 1           | _ |
|            | *                                       | 4                 | 1706      | 3 ‡0                                  |                                         | 31.5                      | 366                 |             | ~ |
|            | v                                       | ν.                | CF-17     | .10#5.                                |                                         | 45.4                      | 300                 | -           | ~ |
| 40         | CSI-J-CC0                               | S                 | C 70-1303 | .36 +0                                |                                         | 80.2                      | 3 C                 | • 2£        | _ |
|            | W-CC0                                   | Ś                 | ~         | .7640                                 |                                         | 76.5                      | <b>5</b> C          |             | 0 |
|            | 1-0c0                                   | S                 | 1307      | .3340                                 |                                         | 84.5                      | <b>3</b> C          | E           | _ |
|            | M- CC0                                  | S                 | 1306      | .73 +0                                |                                         | 17.4                      | <b>3</b> C          | . Æ-        |   |
|            | 033 -N                                  | S                 | 1305      | .32 tO.26E 0                          |                                         | 74.4                      | 26                  | • 4E        | _ |
|            | 900                                     | ς,                | 1310      | .45 t0.07E D                          |                                         | 11.C                      | 300                 | #           | ~ |
|            | 012                                     | 5216              | 1309      | 3.2040.126 02                         |                                         | 34.6                      | <b>3</b> 2          | E           | _ |
|            | 910                                     | S                 | 1308      | .52 to .14E 0                         |                                         | m                         | 10C                 | 8. EF-01    |   |
|            | CMR-C1A                                 | 6                 | C VS-1502 | .84 t0.44E                            |                                         | 6                         | <b>30</b> 0         |             |   |
|            | C 18                                    |                   | 1503      | .07 40.                               |                                         | ÷                         | 707                 |             |   |
|            | C 2A                                    |                   | 1504      | .65 tO.31E                            |                                         | ÷                         | 200                 | 6. EE CO    | _ |
|            | C 28                                    |                   | 1505      | .04E                                  |                                         | 69.6                      | <b>20C</b>          |             |   |
|            | C 3A                                    |                   | 1506      | .136                                  |                                         | 10.9                      | <b>3</b> 0 <b>2</b> |             |   |
|            | C 38                                    |                   | 1507      | 7.14 to.29E 01                        |                                         | 14.4                      | 200                 |             |   |
|            | CIA                                     | 9723              | 1475      | •                                     |                                         | C 5 . E                   | 1000                |             |   |
|            | C 18                                    |                   | 1476      | 7.42 t0.22E 02                        |                                         | 40.5                      | <b>500</b>          |             |   |
|            | C 24                                    |                   | 1477      | .76 +0.26 €                           |                                         | 14.4                      | <b>60</b> C         |             |   |
|            | C 28                                    |                   | 1499      | 46 10.0                               |                                         | 24.ER                     | <b>5</b> 00         |             |   |
|            | C 34                                    |                   | 005]      | .26 to.05E                            |                                         | 19.5                      | 3<br>3<br>3         |             |   |

| 6.86 #11.05 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00 #0.00  | (GTOWN NOO) FIR THEY |                          |                                 |                             |                          |                     |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|---------------------------------|-----------------------------|--------------------------|---------------------|----------------|
| CHR-C3B 9723 CVS-1501 6.86 #1.23 E 01 35.  6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COLLEC<br>NO         | TLE<br>N AMALYSIS<br>NG. | FU-239,240<br>ACTIVITY<br>(DPF) | URBNIUK<br>(FICRO<br>GRAMS) | Y IELC<br>IRERE<br>MORK) | COUNT<br>TIME       | ANAL IPON      |
| R Z-C1-5  NONE  CST-2015  9.3340.61E 00  7.2017  9.4240.52E 01  7.2018  9.3340.61E 00  7.2019  3.2640.13E 02  9.2020  3.0540.11E 01  2.022  1.6240.12E 01  42.640.12E 01  42.740.09E 02  2.024  1.1640.09E 01  2.025  2.0240.09E 01  2.024  1.1840.09E 01  2.024  1.1840.09E 01  2.025  2.0240.09E 02  1.1840.09E 01  2.026  1.1840.09E 01  2.026  1.1840.09E 01  2.027  3.8940.34E 00  1.1540.04E 02  1.4540.32E 01  1.5640.32E 01  1.5640.32E 01  1.5640.32E 01  1.5640.32E 00  1.6640.32E 00  1.664 | CH8 - C38 912        | C VS-1501                | 6.86#1.23£ 01                   |                             | 03.5R                    |                     |                |
| 2016 9.33#0.61E 00 7. 2017 2017 9.42#0.52E 01 28. 2019 3.26#0.13E 02 9. 2019 3.26#0.10E 01 0. 2020 3.02#0.11E 01 46. 2022 1.62#0.12E 01 46. 2023 2.22#0.29E 01 42. 2024 1.18#0.09E 01 29. 2026 1.18#0.09E 02 14. 2027 3.89#0.34E 00 136. 1.2029 3.60#0.32E 01 136. 2030 8.25#4.13E 00 105. 2031 0.00#5.66E 00 105. 2033 1.77#0.21E 00 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NON STORY OF STREET  | C ST - 2015              | .05 #0.08 E                     | 35.2                        | 55.6                     | 2CC                 | $\overline{z}$ |
| 2017 9.42 ±0.52 € 01 28. 2018 4.36 ±0.13 € 02 9. 2019 3.26 ±0.10 € 01 0. 2020 3.05 ±0.11 € 01 2. 2021 3.02 ±0.11 € 01 2. 2022 1.62 ±0.12 € 01 45. 2024 1.18 ±0.09 € 01 42. 2025 2.92 ±0.09 € 02 3. 2026 1.18 ±0.09 € 02 14. 2027 3.89 ±0.09 € 02 14. 2028 2.05 ±0.09 € 02 14. 2029 3.60 ±0.32 € 01 136. 2030 8.25 ±4.13 € 00 195. 2031 0.00 ±5.66 € 00 105. 2033 1.77 ±0.21 € 01 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 2016                     | .33 #0.61E                      | 7.64                        | 83.6                     | 30 <b>C</b>         | 2. CE-02       |
| 2018 4.3640.13E 02 9. 2019 3.2640.10E 01 0. 2020 3.0540.11E 01 2. 2021 3.0240.11E 01 46. 2023 2.2240.29E 01 46. 2024 1.1840.09E 01 29. 2025 2.9240.09E 02 3. 2026 1.1540.09E 02 3. 2027 3.8940.34E 00 11. 2028 2.1640.32E 01 136. 2030 8.2544.13E 00 105. 2031 0.0045.66E 00 105. 2033 1.7740.21E 00 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . ~                  | 2017                     | .42 t0.52E                      | 28.4                        | •                        | 3 C C               | 3              |
| 2020 3.26 ± 0.10 ∈ 0.1 0.2 2.2 2.2 ± 0.11 ∈ 0.1 2.2 2.2 2 ± 0.11 ∈ 0.1 2.2 2.2 ± 0.12 ∈ 0.1 45.2 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.1 2.2 ± 0.29 ∈ 0.2 2.2 ± 0.29 ∈ 0.2 2.2 ± 0.29 ∈ 0.2 2.2 ± 0.29 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 2.2 ± 0.20 ∈ 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € 0.2 € | - 40                 | 2018                     | .36 t0 . 13 E                   | 9.12                        | 47.1                     | <b>300</b>          | 35             |
| 10 2020 3.0540.11E 01 2.2222 2.2240.11E 01 46.2022 1.6240.12E 01 46.2023 2.2240.29E 01 42.2024 2.2240.29E 01 29.2024 2.0240.09E 02 2.025 2.9240.09E 02 3.6224 2.025 2.9240.09E 02 3.6224 2.0224 2.0226 2.0224 2.0226 2.0224 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.0226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.02226 2.022226 2.02226 2.02226 2.022226 2.022226 2.02222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , o                  | 2019                     | .26 to. 10 E                    | 0.358                       | •                        | 30C                 | 3              |
| 2021 3.02 ±0.11E 01<br>2022 1.62 ±0.12E 01<br>2023 2.22 ±0.29E 01<br>2024 1.18 ±0.09E 01<br>2025 2.92 ±0.09E 01<br>2026 1.15 ±0.04E 02<br>2027 3.89 ±0.34E 00<br>2028 2.16 ±0.32E 01<br>2030 8.25 ±4.13E 00<br>2031 0.00 ±5.66E 00<br>2032 2.66 ±0.28E 00<br>2033 1.77 ±0.21E 00<br>2034 3.84 ±0.17E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01                   | 2020                     | .05 40.116                      | 2.14                        | J• 08                    | 30C                 | H              |
| 2022 1.62#0.12E 01 46 2023 2.22#0.29E 01 42 2024 1.18#0.09E 01 29 2025 2.92#0.09E 01 29 2026 1.15#0.04E 02 14 10 2027 3.89#0.34E 00 14 2029 3.60#0.32E 01 136 2030 8.25#4.13E 00 16 2031 0.00#5.66E 00 105 2033 1.77#0.21E 00 7 3.84#0.17E 01 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 2021                     | .02 #0. 11E                     | 4.03                        | 81.7                     | 30 <b>C</b>         | Ή.             |
| 2024 1.18 ±0.29 € 01 42<br>2024 1.18 ±0.09 € 01 29<br>2025 2.92 ±0.09 € 02 3<br>2026 1.15 ±0.04 € 02 14<br>10 2027 3.89 ±0.34 € 00 136<br>2028 2.16 ±0.32 € 01 136<br>2029 3.60 ±0.32 € 00 15<br>2030 8.25 ±4.13 € 00 165<br>2031 0.00 ±5.66 € 00 105<br>2032 2.66 ±0.28 € 00 14<br>2033 1.77 ±0.21 € 00 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-5                 | 2022                     | .62 tO. 12E                     | 0.94                        | 41.5                     | 30 <b>C</b>         | #              |
| 2024 1.1840.09E 01 29<br>2025 2.9240.09E 02 3<br>2026 1.1540.04E 02 14<br>10 2027 3.8940.34E 00 14<br>2028 2.1640.32E 01 136<br>2029 3.6040.32E 00 15<br>2030 8.2544.13E 00 105<br>2031 0.0045.66E 00 105<br>2033 1.7740.21E 00 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 <b>- 40</b>        | 2023                     | .22 40.29E                      | 42.1                        | 30.5                     | 30C                 | 3              |
| 2025 2.9240.09E 02<br>2026 1.1540.04E 02 1<br>2027 3.8940.34E 00<br>2028 2.1640.32E 01 13<br>2029 3.6040.32E 00 1<br>2030 8.2544.13E 00 1<br>2031 0.0045.66E 00 10<br>2032 2.6640.28E 00 1<br>2033 1.7740.21E 00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . (-                 | 2024                     | .1840.098                       | 29.4                        | 48.9                     | <b>2</b> 0C         | ¥.             |
| 2026 1.15 ±0.04 € 02 1<br>10 2027 3.89 ±0.34 € 00<br>2028 2.16 ±0.32 € 01 13<br>2029 3.60 ±0.32 € 00 1<br>2030 8.25 ±4.13 € 00 1<br>2031 0.00 ±5.66 € 00 10<br>2032 2.66 ±0.28 € 00 10<br>2033 1.77 ±0.21 € 00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · <b>a</b> s         | 2025                     | .92 tO.09 E                     | 3.40                        | 42.2                     | <b>30</b> 0         | Ä              |
| 10 2027 3.8940.34£ 00 2028 2.1640.32£ 01 13 2029 3.6040.32£ 01 13 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                    | 2026                     | .15 #0.04E                      | 14.7                        | 87.7                     | 100                 | #              |
| 2028 2.1640.32E 01 13<br>2029 3.6040.32E 00 1<br>2030 8.2544.13E 00 1<br>2031 0.0045.66E 00 10<br>2032 2.6640.28E 00 1<br>2033 1.7740.21E 00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                   | 2027                     | .8940.348                       | 1.28                        | 83.6                     | <b>30</b> C         | Ÿ.             |
| 2029 3.6040.32E 00 11<br>2030 8.2544.13E 00 11<br>2031 0.0045.66E 00 10<br>2032 2.6640.28E 00 10<br>2033 1.7740.21E 00 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , sed                | 2028                     | .16 40.328                      | 136.                        | 24.E                     | <b>3</b> 0 <b>C</b> | 2              |
| 2030 8.2544.13E 00 1<br>2031 0.0045.66E 00 10<br>2032 2.6640.28E 00 1<br>2033 1.7740.21E 00 7<br>2034 3.8440.17E 01 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 2029                     | .60 t0.32E                      | 15.5                        | 86.4                     | 30Z                 | 3              |
| 0.0045.66€ 00 10<br>2.6640.28E 00 1<br>1.7740.21E 00 3.8440.17E 01 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , <b>v</b>           | 2030                     | .25#4.13€                       | 19.9                        | 68.7                     | 40                  | 8              |
| 2.6640.28E 00 1.<br>1.7740.21E 00 3.8440.17E 01 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    | 2031                     | .00 #5.66E                      | 105.                        | 25.C                     | <b>7</b> C          | w              |
| 1.77 #0.21E 00<br>3.84 #0.17E 01 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                    | 2032                     | .66 40. 28 E                    | 14.8                        | 82.5                     | <b>5</b> 00         | 7              |
| 3.84 t0.17E 01 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , σ-                 | 2033                     | .77 #0.21E                      | 7.80                        | 89.2                     | <b>2</b> CC         | 7. £E-62       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07                   | 2034                     | .84 tO.17E                      | 33.0                        | 23.6                     | 200                 | 1. CE CC       |
| 3.41 40.146 01 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) ~                  | 20.0                     | 34140.145                       | 6.06                        | 42.6                     | 200                 | 8 · (E - C2    |

. NEW DATA THIS REPORT

, +7

| LEFT FEHUR ROB 635 1.4 025. 2.10#8.60E-02 400 33.2 0.567 KIDNEY ROK 449 2.1 025. 0.00#0.25E 00 60 37.3 0.273 C. LIVER ROL 392 9.1 025. 1.38#0.13E 00 1000 24.48 0.050 LUNG ROR 480 2.9 025. 3.36#0.20E 00 59.5 2.88 HILAR NODE ROH 447 0.3 025. 2.40#6.10E-02 500 48.5 0.734  LEFT FEMUR ROB 657 1.4 025. 0.00#0.17E 00 40 85.4 KIDNEY ROK 150 1.8 025. 2.53#6.93E-01 400 59.2 LUNG ROR 311 3.5 025. 5.03#0.16E 01 400 55.8 0.182 RIVER ROT 141 1.4 025. 3.82#0.32E 00 1000 12.58 TRACHEA ROT 141 1.4 025. 4.57#0.15E 02 500 56.5 F. MUCO SA RON 327 0.6 025. 5.27#0.36E 00 500 38.6 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

. NEW DATA THIS REPORT

| TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E.5 (CONTINUED)                                                   | ۵)<br>م                                           | 1                                       | 1                            |                                                                                                                                                       | 1                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| AV IMAL<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE TYPE                                                       | TLW<br>NO.                                        | X.W.                                    | WET<br>WEIGHT                | PU 239, 240<br>ACTIVITY<br>(OPM)                                                                                                                      | COUNT<br>TIME                                 | Y 1 EL O<br>( R *R E -<br>MORK )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | URAYIUM<br>(MICRO<br>GRAMS)             |
| 1024 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEFT FEMURE KIDNEY                                                |                                                   | !<br>•                                  | 4                            | 1.23#2.47E-01<br>4.74#5.93E-02                                                                                                                        | 400                                           | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . LUNG<br>HILAR NOJE<br>7 TRACHEA<br>8 G. I. TRACT<br>9 P. MUCOSA | RDR 334<br>RDA 66<br>RDT 80<br>RDS 627<br>RDS 627 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 625.<br>025.<br>025.<br>025. | 5.39*0.34ē 00<br>1.50*5.80E-02<br>2.10*1.20E-01<br>8.56*0.31ē 01<br>5.22*6.95E-02                                                                     | \$00<br>200<br>40<br>200                      | 27.8R<br>64.9<br>39.4<br>77.2<br>61.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.490                                   |
| 10229-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S JAJJIEG                                                         |                                                   |                                         |                              | 1.23#0.78E-01<br>0.00#0.20E 00<br>0.00#0.04E 00<br>2.25#0.80E-01<br>4.58#0.17E 01<br>4.15#0.27E 00<br>2.13#0.09E 01<br>2.55#0.08E 02                  | 600<br>400<br>300<br>1000<br>500              | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.567                                   |
| 1035 - 10035 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - 10040 - | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                             |                                                   |                                         |                              | 1.8411.47E-01<br>2.21#0.10E 01<br>0.00#0.20E 00<br>3.60#6.00E-02<br>2.51#0.74E-01<br>5.17#0.12E 01<br>8.26#1.06E-01<br>1.04#0.62E 02<br>1.12#0.10E 00 | 300<br>600<br>600<br>600<br>100<br>100<br>100 | 200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2 | 0.550                                   |

LOST IN DISS.

REMARKS

TAGGED . VOMITED!

LOST 18 0155.

. NEW DATA THIS REPORT

| TABLE 1                                 | (c)                                     | Ω)                                      |      |                 |                         | 1             |                         |                             |                 |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|------|-----------------|-------------------------|---------------|-------------------------|-----------------------------|-----------------|
| AV!YAL                                  | SAMPLE<br>TYPE                          | TLW<br>NO.                              | 3 9  | NET<br>WE 1 GHT | PU 239, 240<br>ACTIVITY | COUNT<br>11HE | Y 1 EL D<br>( R * R E - | URANIUR<br>(MICRO<br>GRANS) | REHARKS         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |                 |                         |               |                         |                             |                 |
| 1040 - 1                                | LEFT FEMUR                              |                                         | 1.4  |                 | 0.85#1.69E-01           | 0             | 83.7                    |                             |                 |
| *                                       | KIDNEY                                  |                                         | 2.1  |                 | 1.22 to.98E-01          | 200           | 48.2                    |                             |                 |
|                                         | LIVER                                   |                                         | 6.5  |                 | 5.2840.636-01           | 900           | 41.8                    |                             |                 |
| :                                       | 100                                     |                                         | 3.1  |                 | 5.58 # 1.29 E-01        | 300           | 46.3                    | 0.928                       |                 |
| :                                       | HILAN NOJE                              |                                         | 0.3  |                 | 1.31+1.156-01           | <b>5</b> 00   | 72.2                    |                             |                 |
|                                         | TRACHEA                                 |                                         | 1.1  |                 | 1.63 # 0.68 E-0'        | 400           | 59.4                    |                             |                 |
| •                                       | 6. 1. TAACT                             |                                         | 5.5  |                 | 2.69#0.08E U.5          | 30            | 41.1                    |                             | ·               |
| •                                       | P. MUCOSA                               |                                         | 4.0  |                 | 1.11#0.128 00           | 300           | 76.9                    |                             | VUMI I INCLUDED |
| 10                                      |                                         | RDN 318                                 | 0.9  | 025.            | 7.00 40.33E 00          | 1000          | 25.3R                   |                             |                 |
| 1041 - 1                                | FET SENIE                               | RDB 641                                 | 1.6  | 075.            | 4.9344.936-01           | 0,            | 38.3                    |                             |                 |
| 7                                       | KIONEY                                  | ROK 78                                  | 2.4  | 025.            | 3.28 11. 79 6-01        | 200           | 39.6                    |                             |                 |
| ۳<br>• •                                | + 1 VE \                                | ROL 148                                 | 12.9 |                 |                         |               |                         |                             | LOST 1H DISS.   |
| :                                       | L WG                                    |                                         | 4.0  |                 | 1.37+0.05E OL           | 400           | 63.8                    | 0.073                       |                 |
| :                                       | HILAN NODE                              |                                         | 0.0  |                 | 0.00+0.07E 00           | 200           | 69.2                    |                             |                 |
|                                         | TAACHEA                                 |                                         | 2.2  |                 | 1.04+J.06E 01           | 200           | 6.10                    |                             |                 |
| :                                       | G. 1. TRACT                             |                                         | 0.0  |                 | 5.35+0.176 02           | 90            | 23.3                    |                             |                 |
| 6                                       | P. MUCOSA                               |                                         | 0.0  |                 | 4.80+3.80E-02           | 400           | 74.2                    |                             |                 |
| 01                                      | N. MUCOSA                               |                                         | 0.0  |                 | 3.83+3.836-01           | 70            | 31.7                    |                             |                 |
| 1045 - 2 KIDNEY                         | KIDNEY                                  | RDK 158                                 | 3.4  | .220            | 4.21#4.21E-01           | 9             | \$0.5                   | 0.041                       | C.5. 11         |
| 1046 - 1                                | SET SENIE                               |                                         | 1.6  |                 | 1.2840.856-01           | 400           | 36.9                    |                             | C.5. 11         |
|                                         | KIDNEY                                  | ROK 451                                 | 2.1  | 025.            | 1.14+2.275-01           | 9             | 41.6                    | 0.166                       | c.s. =          |
| :                                       | HILAN NODE                              |                                         | 0.3  |                 | 0.0040.10E 00           | 100           | 58.7                    | 0.411                       | C.5. 11         |
|                                         |                                         |                                         |      |                 |                         |               |                         |                             |                 |

| •  | TABLE         | Ξ.                       | Ω               | ,          | 1          | 1            |                                  |               |                                   | 1<br>1<br>1<br>1<br>1       | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|----|---------------|--------------------------|-----------------|------------|------------|--------------|----------------------------------|---------------|-----------------------------------|-----------------------------|-----------------------------------------|
| •  | AVIVAL<br>ND. | SAMPLE                   | TLX<br>NO.      | †<br>†     | ¥ %        | X 10 X 1     | PU 239, 240<br>ACTIVITY<br>(DPH) | COUNT<br>TIME | Y I EL O<br>I R = R E -<br>WORK ) | URANIUM<br>IMICRO<br>GRAMS) | ARK                                     |
| iÄ | 1050 -        | 1 LEFT FEHUR<br>2 KIDNEY | 808 66<br>80K 8 | :          | 1.8        | 025.         | 0.00+0.25E 00<br>2.36+4.72E-02   | 40<br>200     | 35.5<br>70.6                      |                             |                                         |
|    | ::            | 3 LIVER                  |                 |            | 0°3        |              | 0.54#1.08E-01<br>2.55#0.24E 00   | 00 <b>9</b>   | 26 . 18<br>22 . 68                | 0.032                       |                                         |
|    | ::            | S HILAN NODE             |                 |            | 1 10       |              | 1.01#1.01E-01<br>7.56#0.42E 00   | 300<br>200    | 55.0<br>68.0                      |                             |                                         |
|    |               | 8 6. 1. TRACT            |                 |            | <u>_</u>   |              | 1.64±0.04E 04                    | 50            | 54.0                              |                             |                                         |
|    | ::            | P. HUCOSA                |                 | 168<br>309 | <b>د</b> ه | .570<br>025. | 1.64#0.07E 01<br>2.49#0.07E 02   | 200<br>500    | 70.9<br>36.2                      |                             |                                         |
| •  |               |                          |                 |            | c          |              | 00 966 0100 0                    | 4             | 1 67                              |                             |                                         |
| ~  | 1054          |                          | 20 X            | 2 6        | . 4        | 025.         | -2.30#9.20E-02                   | 200           | 24.3                              |                             |                                         |
|    | :             | 3 L I VE 3               |                 | 06         | 8.5        |              | 8.50 #8.50 E-02                  | 300           | 58.7                              |                             |                                         |
|    | :             |                          |                 | 0          | 2.2        |              | 3.63 #0.26E 00                   | 700           | 26.2                              |                             |                                         |
|    | :             |                          |                 | 60         | 0.2        |              | 1.24#0.12E 00                    | 000           | 48.88                             |                             |                                         |
|    | :             | 7 TAACHEA                |                 | E 1        | 1.0        |              | 1.16#0.18E 00                    | 1000          | 0, 11                             |                             |                                         |
|    | :             | ؿ                        |                 | œ          | 4.2        |              | 3.26 #0.06E 03                   | 200           | m ·                               |                             |                                         |
|    | :             | 9 P. MUCOSA              |                 | 145        | 0.3        | 025.         | 6.14#1.17E-01                    | 1000          | 12.9R                             |                             |                                         |
|    | ~             | 10 N. MUCDS4             |                 | 80         | 0.1        |              | 4.14#1.32E-01                    | <b>4</b> 00   | n                                 |                             |                                         |
| 7  | 1060 -        | 1 LEFT FEHUR             |                 |            | 1.1        | 025.         | 1.10#2.216-01                    | 9             | 57.0                              |                             |                                         |
| )  | :             | KIDNEY                   | RDX             | 10         | 5.0        | .570         | 0.00 #0.05E 00                   | 200           | 6.84                              |                             |                                         |
|    | :             | 3 Liver                  |                 |            | 0          |              |                                  | ,             | •                                 |                             | COST IN UIS                             |
|    | :             | רטאט                     |                 |            | m (        |              | 9.9541.346-01                    | 009           | c- <b>17</b>                      |                             |                                         |
|    | -             |                          |                 |            | m ·        |              | 5.00+6.30E-02                    | 004           | · · ·                             |                             |                                         |
|    | =             | RACHEA                   |                 |            | ، و        |              | 0.6141.846-01                    | 001           | 1.4                               |                             |                                         |
|    | =             | ئ                        |                 |            | σ,         |              | 5.73#0.63E 0C                    | 007           | ¥                                 |                             |                                         |
|    | =             | 9 P. MUCOSA              |                 |            | n ·        |              | 0.00+0.04E 00                    | 000           |                                   |                             |                                         |
|    | <del>-</del>  | 10 N. MUCUSA             |                 |            | 10         |              | 10-261.0478.1                    | 0             | ?                                 |                             |                                         |

. NEW DATA THIS REPORT

| - <del>-</del> - | JAPE<br>TYPE | TLW<br>NO. | WET<br>WEIGHT | PU 239, 240<br>ACTIVITY<br>(DPH) | COUNT<br>TIME | Y 18.0<br>18.86-<br>MORK 1 | URANIUM<br>IMICRO<br>GRAMSI | g.      | EMARKS |
|------------------|--------------|------------|---------------|----------------------------------|---------------|----------------------------|-----------------------------|---------|--------|
| - 2              | (            | ROB 617    | 1.5 025.      | ነ የ                              | 700           | 09.9R                      | 0.345                       | 5: 1    | <br>   |
| -                |              | 39         | .7 02         | .89+3.89E-0                      | <b>4</b>      | •                          | .08                         | .s.     | _      |
| :                | 3 LIVE?      | 42         | 70 1.         | .0130.14E D                      | 400           | 60                         | 0.110                       | .5. 1   | _      |
| •                |              | 48         | 3.8 02        | 2.88 to . 23 E 00                | 200           | 37.0                       |                             | .5.     | -      |
| =                | S HILAN NODE | 4.4        | .2 02         | .92#1.37E-0                      | 100           | _                          | 0.311                       | .5. 1   |        |
| 1067 -           | 1 LEFT FEMUR | 8 64       | 20 0.         | <b>G</b> 7                       | 90            | 0.09                       |                             |         |        |
| :                |              | X = X      | 4 02          | .82 #1.03E-0                     | 200           | 57.5                       |                             |         |        |
| :                | 3 L1VE1      | ROL 218    | 7.3 025.      | 2.14 #0.83E-01                   | 600           | 39.1                       |                             |         |        |
| :                | 1 UNG        | R 31       | 70 5.         | .05 #0.05E 0                     | 900           | 37.4                       | 0.039                       |         |        |
| -                | 5 HILAN NOJE | ۲<br>۲     | 30 E.         | .60 #5.10 E-0                    | 300           | 74.3                       |                             |         |        |
| :                | TRACHEA      | 91 1       | ₹3 05         | .7949.795-0                      | 200           | 30.2                       |                             |         |        |
| •                | ၒ            | \$ 61      | 570 E.        | .85 #0.65E 0                     | 200           | 26.8                       |                             |         |        |
|                  | ۲,           | 8          | 70 5.         | .00 #0 .71 E-Q                   | 300           | 8.69                       |                             |         |        |
| <u>.</u>         | 10 N. HUCOSA | 30         | \$ 078        | .90 # 5 . 60 E -0                | 400           | 63.6                       |                             |         |        |
| - 6931           | 1 LEFT FEMUR | 9 66       | N             | 1.04#2.096-01                    | 40            | 67.9R                      |                             |         |        |
| •                | K TON        | K 13       | 9             |                                  |               |                            |                             | LOST :N | 215    |
| :                | 3 LIVER      | 12 7       | o             | .69+0-94                         | 006           | 25.9                       |                             |         |        |
| •                | 5 <u>8</u> 2 | RDR 291    | 3.1 025.      | E 0                              | 200           | 40.8                       |                             |         |        |
| •                | SHILAS NODE  | <u>ج</u>   | 3             | .14 +0.16                        | 300           | 51.5                       |                             |         |        |
| -                | TZACHEA      | 80         | 4             | .42 t0.71E-0                     | 400           | 54.58                      |                             |         |        |
| •                | •            | \$ 63      | ~             | .15+0.03E 0                      | 100           | 17.9                       |                             |         |        |
| •                | ď            | P 1.1      | 5             | .01 #0.84E-D                     | 200           | 70.1                       |                             |         |        |
| <u>-</u>         | O N. MUCOSA  | × 32       | ~             | .00 #0.09E U                     | <b>00</b>     | 28.5                       |                             |         |        |
| 1073 -           | 1 LEFT FEMUR | 19 9       | .7 02         | .18+1.875-0                      | 100           | 12.2R                      | .43                         |         |        |
| •                |              | * **       | 70 2"         | .1441.716-0                      | 100           | 45.1                       | ==                          | .5.     |        |
| •                |              | ROL 427    | 13,4 025.     | 3.4011.32E-01                    | 400           | 37.3                       | 0.695                       | C.S. 11 |        |
| •                |              | × 48       | °1 0          | .94 tO.21E 0                     | 200           | 54.0                       | 1:1                         | 3:      |        |
| -                | 1166.        |            |               |                                  |               |                            |                             |         |        |

<u>.</u>

TABLE E.5 (CONTINUED)

| ANIMAL<br>NJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE                                                                                                                  |                                                                                    | 13.<br>WE 1 GH T                                                                              | PU 239, 240<br>ACTIVITY<br>(DPH)                                                                                                                      | COUNT<br>TIME                                        | Y 1 ELD<br>(R = R E -<br>HOPK )                      | URANIUM<br>(MICRO<br>GRANS) | REMARKS        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|----------------|
| 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NODE<br>TRACHEA<br>G. I. TRACT<br>G. I. TRACT<br>P. MUCOSA               | RDB 640<br>RDK 113<br>RDL 203<br>RDR 314<br>RDJ 151<br>RDS 629<br>RDP 75<br>RDP 75 | 1.4 025.<br>1.8 025.<br>7.5 025.<br>0.3 025.<br>1.7 025.<br>1.7 085.<br>0.5 025.              | 1.01#2.02E-01<br>2.90#4.80E-02<br>6.16#1.11E-01<br>1.85#0.85E-01<br>0.00#0.04E 00<br>2.32#0.84E 00<br>5.90#4.90E-02                                   | 500<br>500<br>300<br>300<br>400                      | 54.1<br>27.68<br>60.2<br>52.4<br>72.4                | ·                           | רס\$ד נא 2155. |
| 10.81 - 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEFT FEHUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NODE<br>HILAR NODE<br>TRACHEA<br>G. I. TRACT<br>G. I. TRACT<br>P. MUZOSA | RDB 637<br>RDL 209<br>RDR 315<br>RDH 315<br>RDH 161<br>RDS 615<br>RDP 198          | 1.7 025.<br>2.1 025.<br>11.0 025.<br>3.6 025.<br>0.3 025.<br>1.6 025.<br>6.0 025.<br>0.4 025. | 2.77*1.23E-01<br>1.78*1.19E-01<br>5.38*0.54E-01<br>4.91*0.18E 01<br>9.00*9.00E-02<br>7.74*0.45E 00<br>7.61*0.19E 02<br>1.16*0.31E-01<br>2.54*0.32E 00 | 400<br>200<br>200<br>400<br>400<br>400<br>900        | 23.0<br>56.3<br>53.2<br>53.2<br>66.1<br>17.5<br>81.6 | 0.516                       |                |
| 10.87 - 2.2 - 2.4 + 4.4 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NODE<br>TRACHER<br>G. 1. TRACT<br>G. 1. TRACT<br>P. MUCGSA<br>N. MUCGSA  | RDB 664<br>RDK 227<br>RDR 313<br>RD4 59<br>RD4 162<br>RD5 621<br>RD9 69            | 1.5 025.<br>2.3 025.<br>10.0 025.<br>0.2 025.<br>1.7 025.<br>5.4 025.<br>5.4 025.             | 4.06*4.06E-01<br>0.00*0.31E 00<br>4.41*0.64E-01<br>6.01*0.17E 01<br>5.60*2.80E-01<br>1.59*0.19E 00<br>2.75*0.05E 03<br>1.90*1.90E-01<br>2.25*0.47E-01 | 600<br>500<br>600<br>500<br>100<br>200<br>200<br>900 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               | 0.319                       |                |

. NEW DATA THIS REPORT

TABLE E.5 (CONTINUED)

|        | • CN  | TYPE        | NO.                 | * . | ¥    | WE I GHT | PU 239, 240<br>ACTIVITY<br>(DPK) | INE  | 1 1 EL U<br>( R = R E -<br>MOR( ) | CRAYION<br>CRICRO<br>CRAYS) | REMARKS                                                  |
|--------|-------|-------------|---------------------|-----|------|----------|----------------------------------|------|-----------------------------------|-----------------------------|----------------------------------------------------------|
| 1694   |       | LEFT FEMUR  | RO8<br>XOX          | 638 | 2.8  | 025.     | 5.07#1.45E-01<br>2.37#0.47E-01   | 400  | 29.3                              | ,<br> <br>                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| •      | 1 177 | LIVER       | ROL                 | 210 | 12.4 |          | 1.10#0.296-01                    | 200  | 76.9                              |                             |                                                          |
| :      | 4     | DNO T       | RDR                 | 342 | .5   |          | 1.06#0.03E 02                    | 400  | 43.1                              | 0.098                       |                                                          |
| :      | S     | HILA? NOJE  | ROH                 | 144 | 0.3  |          | 0.00 # 6.00 E 00                 | 40   | 9.89                              |                             |                                                          |
| :      | _     | TAACHEA     | 10%                 | 171 | 5.6  |          | 2.50 # 0.09 E 01                 | 900  | 21.4                              |                             |                                                          |
| :      | 80    | G. 1. 134CT | R.) S               | 019 | 8.0  |          | 2.3840.07E 02                    | 20   | 55.1                              |                             |                                                          |
| :      | σ     |             | ROP                 | 89  | 4.0  |          | 1.24#0.16E 00                    | 200  | 6.49                              |                             |                                                          |
| :      | 10    | N. MUCOSA   | RON                 | 344 | 1.0  | .820     | 1.53#0.07E 01                    | 1000 | 18.68                             |                             |                                                          |
| 1096 - |       | LEFT FEMUR  | ROB                 | 651 | 1.3  |          | 0.00#0.18E 00                    | 4    | 78.5                              |                             |                                                          |
| :      | ~     | K I UNE Y   | <b>80</b> ×         | 452 | 2.6  |          | 5.59#1.ABE-01                    | 1000 | 15.28                             |                             | FDUND 2/20/64                                            |
| :      | M     | L 1 VE 3    | RDL                 | 226 | 10.8 |          | 3.33#0.93E-01                    | 400  | 59.1                              |                             |                                                          |
| :      | 4     | L WG        | ROR                 | 339 | 3.5  |          | 1.77 #0.64E-01                   | 009  | 66.5                              |                             |                                                          |
| :      | 'n    | HILAN NODE  | 80 ±                | 84  | 0.5  |          | -3.80 # 7.60 E-02                | 200  | 43.7                              |                             |                                                          |
| :      | ~     | TRACHER     | RU T                | 167 | 2.2  |          | 4.40#2.80E-02                    | 600  | 85.1                              |                             |                                                          |
| :      | ∞     | G. 1. TRACT | S CS                | 620 | 2.5  |          | 4.80 +0.57E 00                   | 200  | 18.0                              |                             | TAGSED "LARSE"                                           |
| :      | σ     | P. MUCOSA   | ROP                 | .51 | 0.1  |          | 7.00 #8.80 E-02                  | 200  | 67.7                              |                             |                                                          |
| :      | 10    | N. MUCOSA   | <b>X</b> 0 <b>N</b> | 319 | 0.8  | •\$70    | 1.59+0.17E 00                    | 400  | 42.5                              |                             |                                                          |
| 1097 - | -     | LEFT FEMUR  | ROB                 | 624 | 1.5  |          | 1.69+2.54E-01                    | 9    | 80.8                              | 0.435                       |                                                          |
| :      | ~     | K 10NE Y    | #0#                 | 444 | 2.2  |          | 1.76 + 0.88 E-01                 | 400  | 53.6                              |                             |                                                          |
| =      |       | LIVE        | ROL                 | 397 | 10.2 |          | 8.00 # 1.08 E -01                | 009  | 28.8                              | 0.074                       |                                                          |
| :      | 4     | 1040        | ROR.                | 483 | 3.3  | 025      | 3.04#0.21E 00                    | 200  | 47.3                              | 0.299                       | C.S. 11                                                  |
| =      | •     | HILAN NOSE  | <b>8</b> 04         | 442 | 0.5  |          | -0.55 tl. 10 E-01                | 100  | 51.7                              | 0.214                       |                                                          |

. NEW DATA THIS REPORT

TALLE E.6 (CONTINUED)

| URAN IUM REHARKS<br>IM ICRO<br>GRAMS 1 | 0.311<br>LOST IN DISS.<br>TAGGED 'BLOOD IN TRACHEA'                                                                                  | 0.251                                                                                                                                | 0.524 C.S. II<br>0.789<br>TAGGED *CONTENTS EXPOSED*                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| YIELD<br>(R:RE-                        | 34.5<br>86.6<br>46.7<br>29.7<br>51.9<br>17.9<br>59.8                                                                                 | 668 668 668 668 668 668 668 668 668 668                                                                                              | 6 4 1 2 2 2 2 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                |
| COUNT                                  | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                    | 400<br>600<br>600<br>600<br>400<br>700<br>700<br>700                                                                                 | 600<br>1000<br>300<br>400<br>40<br>200<br>200<br>600                                                                                 |
| PU 239, 240<br>ACTIVITY<br>(DPH)       | 2.05*4.11E-01<br>9.10*5.50E-02<br>6.61*0.66E-01<br>1.09*0.0¢E 01<br>3.11*1.09E-01<br>1.17*0.0¢E 03<br>3.86*0.10E 01<br>9.49*0.27E 01 | 0.00#0.50E 00<br>1.14#2.28E-01<br>4.00#0.64E-01<br>3.97#0.19E 00<br>8.88#0.98E-01<br>2.01#0.16E 00<br>7.08#0.23E 02<br>1.07#0.05E 01 | 4.70+0.236 00<br>2.87+2.87E-01<br>4.03+1.68E-01<br>3.79+0.21E 00<br>1.03+2.06E-01<br>6.08+1.33E-01<br>8.33+0.17E 03<br>9.64+1.45E-01 |
| NET<br>WEIGHT                          | 1.7 025,<br>2.1 025,<br>1.2 0 625,<br>0.2 025,<br>1.6 025,<br>7.0 025,<br>7.0 025,<br>0.4 025,                                       | 1.3 025.<br>1.7 025.<br>13.3 025.<br>0.2 025.<br>1.5 025.<br>6.6 025.<br>6.6 025.                                                    | 3.8 025.<br>1.0 025.<br>7.9 025.<br>2.4 025.<br>0.2 025.<br>1.1 025.<br>5.3 075.<br>0.4 025.                                         |
| TLW<br>NO.                             | RDB 642<br>RDK 164<br>RDL 205<br>RDR 332<br>RDH 152<br>RD T 197<br>RD S 626<br>RD 65                                                 | RDB 665<br>RDK 138<br>RDL 134<br>RD4 310<br>RD1 173<br>RD 5 623<br>RDP 76                                                            | ROR 337<br>ROK 170<br>ROL 91<br>ROL 91<br>ROH 157<br>ROT 143<br>ROS 614<br>ROP 85                                                    |
| SAMPLE<br>TYPE                         | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NODE<br>TRACHEA<br>G. I. TRACT<br>P. HUCOSA                                           | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NODE<br>TRACHEA.<br>G. I. TRACT<br>P. MUCOSA                                          | LUNG<br>LEFT FEMUR<br>KIDNEY<br>LIVE<br>LUNG<br>HILAY MODE<br>TAACHEA<br>G. I. TAACT<br>P. MUCOSA<br>N. MUCOSA                       |
| AVIHAL<br>ND.                          |                                                                                                                                      | 232                                                                                                                                  | 1119 - 4                                                                                                                             |

\* HEM DATA THIS LEPORT

į

| REMARKS                          | LOSF IN 01 SS.                                                                                                                                                         | C.S. 11<br>C.S. 11 LOST IN DISS | C.S. 11       |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|
| URANIUM<br>(MICRO<br>GRAMS)      | 0.251                                                                                                                                                                  | 0.888                           | 0.334         |
| YIELD<br>(R#RE-<br>WORK)         | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                               | 36.1                            | 0.99          |
| COUNT<br>T IME                   | 400<br>400<br>100<br>100<br>1000                                                                                                                                       | 400                             | 200           |
| PU 239, 240<br>ACTIVITY<br>(DPH) | 2.38 # 2.38 E - 01<br>9.80 # 5.40 E - 02<br>3.18 # 0.21 E 00<br>0.00 # 0.07 E 00<br>6.10 # 6.10 E - 02<br>2.38 # 0.14 E 01<br>1.41 # 0.40 E - 01<br>2.80 # 0.51 E - 01 | 1.22 to.16 E 00                 | 5.40#7.20E-02 |
| WE IGHT                          | 1.5 025.<br>10.8 025.<br>10.8 025.<br>6.1 025.<br>1.8 025.<br>1.8 025.<br>0.6 025.                                                                                     | 1.1 025.                        | 0.2 025.      |
| TLW<br>NO.                       | RDB 654<br>RDK 112<br>RDL 219<br>RDR 333<br>RDH 60<br>RDT 172<br>RDS 611<br>RDP 72                                                                                     | RDB 636                         |               |
| SAMPLE<br>TY?E                   | 1132 - 1 LEFT FEHUR 2 KIDNEY 3 LIVER 4 LUNG 5 HILAR NODE 7 TRACHEA 8 G. 1. TRACT 9 P. HUCOSA                                                                           | 1134 - 1 LEFT FEMUR             | HILAN NODE    |
| ANIMAL<br>NO.                    | 1132 - 1                                                                                                                                                               | 1134 - 1                        | : :           |

---

TABLE E.5 (CONTINUED)

NEW DATA THIS REPORT

G. I. TRACT P. MUCD SA V. MUCD SA

CONFIDENTIAL

LEFT FEMUR KIDNEY 0.781

400 400 400 400 400 400

0.0040.32E 00 4.5043.60E-02 1.2640.63E-01 5.8240.80E-01 0.6041.00E-01 0.0040.05E 00 2.5840.07E 03 3.1945.32E-02

025. 025. 025. 025. 025. 025. 025.

653 166 220 335 212 202 154

R008 R008 R008 R008 R008 R008

> LIVER LUNG HILAR NODE TRACHEA

|            | SAMPLE<br>TYPE | TLW<br>NO. |     | WE I GI  | <b>T</b> | PU 239, 240<br>ACTIVITY<br>(DPM) | COUNT<br>TIME | Y 1 B. D<br>(R = RE-<br>WORK) | URANIUM<br>IMICRO<br>GRAMS) | REMAGKS              |
|------------|----------------|------------|-----|----------|----------|----------------------------------|---------------|-------------------------------|-----------------------------|----------------------|
| LEFT       | FENUR          | 1          | 517 | 5.8      | .570     | 1.94+0.55E-01                    | 006           | 45.4                          |                             |                      |
| KIDNEY     | >              |            | 514 | •••      | 025.     | 4.54#4.548-01                    | 40            | 46.8                          |                             |                      |
| IVE        |                |            | 504 | 1.6      | LBS.     | 3.18#0.826-01                    | 800           | 35.2                          |                             |                      |
| LUNG       |                |            | 115 | 12.4     | 025.     | 4.01#0.84E-01                    | 400           | 9.04                          |                             |                      |
| HILAS      | NOSE           | RS-        | 213 | 0.2      | .520     | 2.50#3.10E-02                    | 009           | 80.3                          |                             |                      |
| LEFT       | LEFT FEMUR     |            | 599 | 7.8      | 025.     | 1.15 \$0.82 6-01                 |               | 36.1                          |                             |                      |
| X I D NE   | <b>&gt;</b>    |            | 590 | 3.1      | S        | 1.22#0.70 6-01                   | 400           | 45.2                          |                             |                      |
| LIVER      |                |            | 574 | 1.3      | LRS.     | 4.68 t0.30 E DO                  | ٠.            | 36.8R                         |                             |                      |
| 200        |                |            | 542 | 15.2     | .220     | 2.40 #0.10E'01                   | 200           | 35.7                          | 2.41                        |                      |
| HILA?      | NODE           |            | 605 | 0.3      | 025.     | 0.00 \$0.54E 00                  | 04            | 26.3                          |                             |                      |
| TAACHEA    |                |            | 592 | 3.5      | .820     | 1.28 #0.51 E-01                  |               | 55.3                          |                             |                      |
| _          | . TRACT        |            | 667 | 14.9     | L85.     | 9.07 +0.30 € 01                  | 800           | 03.88                         |                             |                      |
| ¥.         | MUCO SA        | R SN       | 965 | 3.1      | .220     | 2.73 to.08 E 02                  | 1000          | 19.5R                         |                             | TAGGED . VOR. I TED. |
| K I DINE Y | <del>_</del>   |            | 910 | •        | .820     | .23#2.45E-0                      | 40            | 57.7                          |                             |                      |
| LEFT       | LEFT FEMUR     | R 58       | 655 | 5.5      | .570     | 1.57#0.59E-01                    | 200           | 53.4                          |                             |                      |
| LIVE       |                |            | 507 | •        | 1.45.    | .01 #0.54 E-0                    | 006           | 44.8                          |                             |                      |
| 1 U.1G     |                |            | 995 | •        | 025.     | .03 #0.13E 0                     | 400           | 47.4                          |                             |                      |
| HILAS      | 360N           |            | 615 | •        | .570     | .30 £ 3.80 E-0                   | 009           | 65.4                          |                             |                      |
| LEFT       | FEMUR          |            | 466 | \$       | 025.     | .3047.906                        | 600           | 29.8                          |                             |                      |
| K 1045     | K TOYEY        |            | 370 | ٠.<br>و. | 025.     | 1.10#2.20E-01                    | 40            | 4.49                          |                             |                      |
| LIVER      |                |            | 358 | Ų,       | LAS.     | .9640.79                         | 400           | 55.7                          |                             |                      |
| L U.S      |                |            | 556 | Ġ        | .570     | .09#0.116                        | 200           |                               |                             |                      |
| HILES      | 1006           | RST        | 287 | *        | .570     | .15+3.92E                        | 400           | 60.2                          |                             |                      |
| LEFT       | LEFT FEMUR     |            | 486 | 6.5      | 025.     | 2.15+2.15E-01                    | 40            | 65.7                          |                             |                      |
| KIDNEY     | >              |            | 250 | 3.9      | 0.25.    | 4.12+8.24E-72                    | 100           | 8.89                          |                             |                      |
| 1 1 46.4   |                | A SE       | 272 | 1.2      | Las.     | 3.3310.806-01                    | 300           | 19.1                          |                             |                      |
| 1000       |                |            | 257 | -,-      | Liss.    | 5.16+0.59E-01                    | 200           | 47.8                          |                             |                      |
|            |                |            |     |          |          |                                  |               |                               |                             |                      |

. YEW DATA THIS REPORT

\*

| AVIMAL<br>NO.   | SAMPLE                                              | TLW<br>NO.                                                         | 7 %                                    | WET<br>WE 1 GHT                                | PU 239, 240<br>ACTIVITY<br>(CPH)                                                                                     | COUNT<br>TIME                                       | Y I EL D<br>I R = R E -<br>WORK I            | URANIUM<br>IMICRO<br>GRAMSI     | æ                                     | REMARK S |
|-----------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------------|----------|
| 2013 - 11       | LEFT FEMUR KIDNEY LIVER LUNG                        | RSB 532<br>RSK 369<br>RSL 275<br>RSK 545<br>RSH 280                | 5.<br>15.                              | 4 025.<br>6 025.<br>6 LBS.<br>7 025.<br>4 025. | 2.31#0.46E-01<br>3.37#3.37E-01<br>2.92#0.18E DO<br>9.30#0.30E 01<br>7.09:4.26E-01                                    | 500<br>40<br>500<br>400<br>70                       | 2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8      |                                 |                                       |          |
| 2015 - 1        | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUVG<br>HILAR NODE | RSB 457<br>RSK 246<br>RSL 360<br>RSR 554<br>RSH 277                |                                        | 4 025.<br>4 025.<br>1 L85.<br>6 025.<br>3 025. | 2.9641.29E-01<br>1.62#0.13E 00<br>0.00#0.15E 00<br>6.20#0.38E 00<br>1.91#1.91E-01                                    | 1000<br>900<br>60<br>400<br>200                     | 15.3<br>32.1<br>69.3<br>26.7                 |                                 |                                       |          |
| 2019 - 1        | LEFT FEMUR KIDNEY LIVER LUVG HILAR NODE             | RSB 407<br>RSK 436<br>RSL 419<br>RSR 477<br>RSH 398                |                                        | 1 025.<br>7 025.<br>6 LAS.<br>4 025.<br>3 025. | 0.00#0.18E 00<br>2.65#0.61E-01<br>7.34#1.16E-01<br>3.93#0.31E 00<br>0.69#1.38E-01                                    | 100<br>300<br>200<br>500<br>100                     | 32.0<br>59.8<br>67.5<br>28.1                 | 0.648<br>0.344<br>1.22<br>0.805 | , , , , , , , , , , , , , , , , , , , |          |
| 2027 - 1        | LEFT FEMUR<br>KIDNEY<br>LIVEN<br>LUNG<br>HILAR NOJE | 8                                                                  | 55 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9 025.<br>9 025.<br>4 LBS.<br>0 LBS.<br>3 025. | 5.29#0.99E-01<br>1.97#0.79E-01<br>7.30#0.93E-01<br>1.02#0.04E 01<br>2.01#1.34E-01                                    | 1000<br>900<br>400<br>400<br>400                    | 15.58<br>40.0<br>69.0<br>79.6<br>21.2        |                                 |                                       |          |
| 2028 - 2030 - 5 | HILAN NODE HIEFT FEMUR KIDNEY LIVEN LUNG HILAN NODE | RSA 34<br>RSH 11<br>RSB 53<br>RSK 36<br>RSK 36<br>RSK 36<br>RSK 36 | E E E E E E E E E E E E E E E E E E E  | 3 025.<br>2 025.<br>3 025.<br>9 025.<br>4 025. | 1.08+0.04E 01<br>-1.80+3.50E-02<br>2.07+2.07E-01<br>4.30+8.59E-02<br>3.55+0.84E-01<br>5.12+0.29E 00<br>2.49+0.92E-01 | 200<br>200<br>44<br>500<br>600<br>600<br>600<br>600 | 58.9<br>57.3<br>57.3<br>57.3<br>57.3<br>54.1 | 0.092                           | C.S. 1                                |          |

. NEW DATA THIS REPORT

TABLE E.6 (CONTINUED)

| -CN      | SAMPLE                                                             | TLW<br>ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | э,                                                                            | HE I                 | WEIGHT                               | PU 239, 240<br>ACTIVITY<br>(DPH)                                                  | COUNT<br>TIME                    | V18.0<br>(R*RE-                                 | URAN IUM<br>(M ICRO<br>GRAMS)    | REMARKS                                           |
|----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|--------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------|----------------------------------|---------------------------------------------------|
| 2031     | U.S. INF                                                           | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51<br>489<br>427                                                              | 2.5                  | LBS.                                 | .53#0.09E<br>.88#0.05E                                                            | 20 20                            | 15.9                                            |                                  | A 4                                               |
| :::      | 255<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255 | 2225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 454<br>266<br>353                                                             | 25.0                 | LBS.                                 | .61#0.03E<br>.98#0.15E                                                            | 7007                             | 62 54<br>20 54<br>20 54<br>20 54                |                                  | . ~ ~ ~                                           |
|          | UNINE<br>UNINE<br>FECES                                            | R S S U R S S U R S S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F R S F | 5236<br>5236<br>5255<br>5255                                                  | 0.58                 | LBS.<br>LBS.<br>LBS.                 | 2.54*0.12E 01<br>2.83*0.05E 03<br>1.91*0.04E 03<br>1.42*0.03E 03                  | 300<br>300<br>300                | 15.05<br>15.08<br>7.05<br>16.08<br>7.08<br>7.08 |                                  | 21 JUNE<br>22 JUNE<br>16 MAY<br>17 MAY            |
| 2032     | 1 LEFT FEMUR 2 KIDNEY 3 LIVER 4 LUNG 5 HILAR NODE                  | R SK<br>R SK<br>R SL<br>R SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408<br>473<br>433<br>433                                                      | 19.00                | 025.<br>185.<br>025.<br>025.         | 2.31*2.31E-01<br>4.10*4.10E-02<br>2.01*0.21E 00<br>4.30*0.28E 00<br>0.00*0.09E 00 | 100<br>300<br>500<br>800<br>100  | 36.8<br>61.3<br>27.7<br>25.6<br>61.4            | 0.470<br>0.939<br>0.599<br>0.288 |                                                   |
| 2036     | URINE<br>URINE<br>URINE<br>URINE<br>FECES                          | A R S K K S K C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 461<br>238<br>297<br>524                                                      | 14 mm 0<br>4 4 m 0 m | LBS.<br>LBS.<br>LBS.<br>LBS.         | 1.81+0.05E 02<br>5.61+0.08E 02<br>1.48+0.06E 02<br>4.78+0.02E 03<br>9.63+0.25E 02 | 800<br>400<br>400<br>400         | 61.9<br>07.48<br>04.48<br>16.1                  |                                  | 23 HAY<br>20 JUNE<br>21 JUNE<br>22 JUNE<br>16 HAY |
| 2039 - 1 | 1 LEFT FEMUR 2 KIONEY 3 LIVER 4 LUNG URINE                         | R S S K S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1.9                  | 025.<br>025.<br>185.<br>185.<br>185. | 0.00+0.12E 00<br>1.91+1.27E-01<br>3.12+0.26E 00<br>2.18+0.05E 02<br>3.02+0.11E 01 | 1000<br>300<br>400<br>400<br>200 | 13.98<br>46.8<br>36.5<br>76.1                   |                                  | 16 4AY                                            |

. NEW DATA THIS REPORT

237

CONFIDENTIAL

| TABLE E.6      | E.6 (CONTINUED) | (05        |           |                                  |             |                          |                               |     |
|----------------|-----------------|------------|-----------|----------------------------------|-------------|--------------------------|-------------------------------|-----|
| AN EMAL<br>NO. | SAMPLE          | TLH<br>NO. | WE I GHT  | PU 239, 240<br>ACTIVITY<br>(DPH) | COUNT       | YIELO<br>(R=RE-<br>MORK) | URAN LUM<br>(M ICRO<br>GRAMS) |     |
| 2050           |                 | •          | •         |                                  | 001         | 18.5                     | 4.68                          | 3.  |
|                | A LIVER         |            |           |                                  | 9           | 32.1                     |                               | ם נ |
| ::             | 4 LUVG          | RSR 474    | 15.5 025. | 9.05+0.21E 01                    | 500         | 63.5                     | 0.028                         | 5   |
|                | í.              |            |           |                                  | 2           | 1.35                     | 974.0                         | ;   |
| - 2502         | 1 LEFT FEMUR    |            |           |                                  | 70          | 42.9                     |                               |     |
| :              |                 | 85K 588    | 3.5 025,  |                                  | 40          | 69.5                     |                               |     |
| :              |                 |            |           |                                  | 400         | 34.1                     |                               |     |
| :              |                 |            |           |                                  | 006         | 19.8                     | 2.13                          |     |
| •              |                 |            |           |                                  | 40          | 56.6                     |                               |     |
| :              |                 | RSI        |           |                                  | 400         | 41.8                     |                               |     |
| :              | ۍ               | RSS        |           |                                  | 200         | 35.5                     |                               |     |
| -              | O N. MUCOSE     | R SN       |           |                                  | 700         | 21.28                    |                               |     |
| 2057           | UR INE          |            |           |                                  | 200         | 19.2                     |                               | 16  |
| :              | UZ INE          | RSU 534    | 2.2 LBS.  | 4.6740.15E                       | 100         | 63.2                     |                               | 23  |
| :              | FECES           | RSF 500    | 0.9 185.  | 1.50+0.046 03                    | 200         | 09.0R                    |                               | 16  |
| - 0902         | LEFT FEMUR      |            |           |                                  | 100         | 53.1                     |                               |     |
|                |                 |            |           |                                  | 9           | 1.49                     |                               |     |
| •              | 3 L!VE?         | RSL 242    | 1.6 (85.  | 5.28 #1.06 E-01                  | 400         | 33.5                     |                               |     |
| :              |                 |            |           |                                  | 200         | 74.0                     |                               |     |
| :              | S HILAY NODE    |            |           |                                  | <b>4</b> 00 | 0.89                     |                               |     |
| - 4902         |                 | R 58 465   |           |                                  | 300         | 39.6                     |                               |     |
| •              |                 |            |           |                                  | 400         | 83.3                     |                               |     |
| •              | 3 LIVER         | RSL 366    | 1.2 185.  | 3.18+3.185-01                    | 90          | 48.6                     |                               |     |
|                | 25              |            |           |                                  | 1000        | 14.68                    |                               |     |
| •              | S HILAR NOJE    |            |           |                                  | 200         | 56.3                     |                               |     |

16 HAY 23 HAY 16 4AY

. NEH GATA THIS REPORT

1

REHARKS

C.S. 11 C.S. 11 C.S. 11

F.

TABLE E.6 (CONTINUED)

|                | AD. IYPE        | NO.     | <b>1</b> | ие тен т      | ACTIVITY<br>(DPH) | T IME | Y 1 EL D<br>(R = R E -<br>HORK) | CRAMS)                                    | NE NEW N.S        |
|----------------|-----------------|---------|----------|---------------|-------------------|-------|---------------------------------|-------------------------------------------|-------------------|
| 18             | UNINE           | RSU 414 | 2.9      | 1.85.         | 1.46#0.04E 03     | 30    | 48.5                            | i<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | •                 |
| •              | 021VE           |         | •        | ,<br>19<br>19 | 0                 | 100   | 15.7                            | . •                                       |                   |
| :              | 37.5            |         | ٠        | 185           | 0                 | 200   | 16.1                            | . •                                       |                   |
| :              | FECES           |         | 0.8      | L85.          | 0                 | 90    | 30.2                            |                                           | 16 MAY            |
| 2602           | U2 [15          |         | 0.0      | LBS.          | 2.34#0.05E 04     | 0.7   | 46.7                            | -                                         | ,                 |
| :              | UNINE           |         | 1.4      | <b>.</b> 85.  | 4.68#0.10E 03     | 9     | 33.2                            | -                                         | 7 4 4 4           |
| :              | <b>LA 1</b> 'AE | RSU 523 | 4.3      | 185.          | 3.46#0.10E 02     | 4     | 52.0                            | - ••                                      | 21 MAY            |
| :              | U3 INE          |         | 3.4      | 185.          |                   | )     | }<br>!                          | 22                                        | MAY LOST IN DISS. |
| :              | UNINE           |         | 1.5      | LBS.          | 1.78#0.048 02     | 100   | 50.5                            | ''                                        | :                 |
|                | UNINE           |         | 3.8      | L85.          | 1.0250.03E 02     | 200   | 14.7R                           | . —                                       | 18 JUNE           |
|                | UR INE          |         | 3.0      | LBS.          | 2.96 # 0.14 E 01  | 200   | 19.5                            | -                                         | 3K17 61           |
| <b>:</b>       | UNINE           |         | 5.6      | 183.          | 2.63#0.07E 02     | 1000  | 2 .9R                           | 21.                                       | JUNE BREAKAGE LOS |
| <b>:</b><br>23 | 325             |         | 3.3      | L85.          | 4.64#0.15E 01     | 200   | 26.2                            |                                           | 22 JUNE           |
| =              | FECES           |         | 0.3      | L85.          | 1.28 ¢0.02E 02    | 200   | 58.6                            |                                           | L6 MAY            |
| =              | FECES           |         | 0.5      | <b>.</b> 65.  | 9.27 #0.22E 02    | 40    | 54.8                            | - <b>-</b>                                | 17 MAY            |
| 2093 -         | 1 LEFT FEMUR    |         |          | 025.          | 7.42#1.42E-01     | 1000  | 10.78                           |                                           |                   |
| :              | 2 KIDVEY        |         |          |               | 0.76*1.52E-01     | 09    | 62.2                            |                                           |                   |
| :              |                 |         | 1.2      |               | 6.81*1.19E-01     | 200   | 26.4                            |                                           |                   |
| :              | + LUNG          |         |          |               | 1-12+0-15E 00     | 500   | 32.88                           |                                           |                   |
| :              | 3 HILAN NODE    | RS4 284 |          | .\$20         | 0.00+0.27E 00     | 04    | 51.5                            |                                           |                   |
| 2095 -         | 1 LEFT FEMUR    |         | 5.7      |               | 2.07#1.665-01     | 300   | 24.4                            |                                           |                   |
| :              |                 |         | 3.2      |               | 0.00+0.136 00     | 9     | 77.4                            | •                                         |                   |
| :              | 3 L I VE 1      | RSL 273 | 1.3      |               | 5.55+0.78E-01     | 004   | 6.84                            |                                           |                   |
| :              |                 |         | 13.4     |               | 4.39+0.34E 00     | 400   | 33.7                            |                                           |                   |
| :              | S HILAR NOJE    |         | 0.3      | ozs.          | 0.00+0.17E 00     | 200   | 21.0                            |                                           |                   |
| 2097           | 37) 70          | SU.5    | -        | 185.          |                   | 9     | •                               | •                                         | ~                 |
| =              | FECES           | RSF 536 | e.<br>0  | LOS.          | 7.97+0.41E 00     | 300   | 56.0R                           | •                                         | × × ×             |

| ANIMAL SAMPLE TLW NEGHT ACTIVITY TIME (RARE-URANIUM TOWN)  2100 - 1 LEFT FEMUR RSB 411 5-1 025. 2-10+3-15E-01 100 27.0 1.76 C.5  2101 - 1 LEFT FEMUR RSB 411 5-1 025. 2-10+3-15E-01 400 38.4 0.340 C.5  2110 - 1 LEFT FEMUR RSB 411 5-1 025. 2-10+3-15E-01 400 38.4 0.340 C.5  2110 - 1 LEFT FEMUR RSB 412 5-1 025. 2-50+3-70E-02 400 63.6 0.18 C.5  2110 - 1 LEFT FEMUR RSB 429 5-7 025. 1-20+2-10E-01 400 20.8 0.18 C.5  2110 - 1 LEFT FEMUR RSB 429 5-7 025. 1-20+2-10E-01 90 60.3  2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |             |                |               |                              |                             |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------|---------------|------------------------------|-----------------------------|---------------|
| 2100 - 1 LEFT FEWUR RSS 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | ANINA<br>MO. |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HE I     | GHT         | 24<br>ITY      | COUNT<br>TIME | 1 EL O<br>R * R E<br>O R K ) | URAY1UM<br>(M1CRO<br>GRAMS1 | REMARKS<br>RR |
| 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 2100         | THE PERSON IN | 17 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0.55        | 10#3.15        | 100           | 27.0                         | 1.7                         |               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |              |               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 2           | . A2 & 1 . D2  | 100           | 4.86                         | 34                          | .5.           |
| - 1 LEFT FEWUR RSB 429 5.7 DZS. 1.2042.41E-01 100 20.8 0.202 C.S. HILAR NODE RSH 438 0.3 DZS. 2.5043.70E-02 400 63.6 0.100 C.S. HILAR NODE RSH 438 0.3 DZS. 1.2042.41E-01 90 60.3 C.S. 2.5043.70E-01 90 60.3 C.S. 3 LIVER RSB 429 5.7 DZS. 0.5211.04E-01 90 60.3 C.S. 3 LIVER RSB 429 5.7 DZS. 0.5211.04E-01 90 60.3 C.S. 3 LIVER RSB 429 5.7 DZS. 0.5211.04E-01 90 60.3 C.S. 3 LIVER RSB 51 424 114 105. 4.7940.77E-01 90 60.3 C.S. 5.5040.21E 00 60.0 67.7 C.S. 5.0840.21E 00 60.0 60.0 60.0 60.0 60.0 60.0 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |              |               | 7 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 6 7 | -        |             | 74.1           | 0 0           | , e.                         | -                           | -             |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |              |               | 35 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •        | ,<br>,<br>, |                |               |                              | : :                         | : -           |
| 2110 - 1 LEFT FEMUR RSB 429 5.7 025. 1.2042.41E-01 100 23.6 0.100 5.5  1 2 KIDNEY RSK 394 3.7 025. 1.2042.41E-01 100 23.6 0.3  2 LIVER RSB 429 5.7 025. 1.2042.41E-01 90 60.3  1 1 VET FEMUR RSB 429 5.7 025. 1.2042.41E-01 90 60.3  2 LINE RSW 475 12.3 025. 1.3040.21E-01 90 60.3  2 LINE RSW 475 12.3 025. 1.3040.21E-01 90 60.3  2 LINE RSW 475 12.3 025. 1.3040.04E 04 60 59.7  2 LINE RSW 459 1.6 LBS. 2.3040.04E 04 60 59.7  1 UAINE RSW 459 1.6 LBS. 3.3040.04E 02 300 12.4R  1 UAINE RSW 237 5.1 LBS. 3.3040.06E 02 300 12.4R  1 UAINE RSW 237 5.1 LBS. 3.3040.05E 02 300 12.4R  1 UAINE RSW 241 2.6 LBS. 1.8440.05E 02 30.4  2 LEFT FEMUR RSB 386 5.6 DZS. 1.6540.31E-01 400 68.8  2 KLONEY RSK 191 3.3 DZS. 2.3440.91E-01 400 68.8  2 KLONEY RSK 191 3.3 DZS. 2.3440.01E-01 400 60.5  3 LIVER RSK 196 0.8 LBS. 1.0840.06E 01 300 40.5  4 LUNG RSK 186 0.8 LBS. 1.0840.06E 01 300 40.5  5 KLONEY RSK 196 0.8 LBS. 1.0840.06E 01 400 33.4  5 KLONE RSS 186 5.6 DZS. 1.0840.06E 01 400 33.4  6 LUNG RSK 186 0.8 LBS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 2.2 CBS. 1.0840.06E 01 400 00.5  2 KLONE RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  3 LIVER RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  4 LUNG RSK 186 0.8 LBS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  2 KLONE RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  3 LIVER RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  4 LUNG RSK 186 0.8 LBS. 1.0840.06E 01 400 00.5  5 KLONE RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1.0840.06E 01 400 00.5  1 TAACHAR RSS 186 5.6 DZS. 1. |    | -            |               | SK 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.       | 270         | 7.0*12.        | 1000          | 2.07                         | 0                           | ::            |
| 2110 - 1 LEFT FEWUR RSB 429 5.7 025. 1.2042.41E-01 100 23.6  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | :            | HILAN         | S+ +3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ċ        | •\$20       | .50+3.70       | 004           | 63.6                         | • •                         | .5.           |
| ## 2 KIDNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |              | -             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.       | .570        | .20\$2.416     | 100           | 23.6                         |                             | .5            |
| 111 UAINE RSW 475 12.3 0ZS. 5.08 +0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | -            |               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |             | .5241.046      | 90            | 60.3                         |                             |               |
| ## Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | :            |               | : 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | •           | .7940.77       | 200           | 0.84                         |                             | .5.           |
| ## SHILAY NODE RSH 448 0.3 025.   1.1942.37E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | •            |               | 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.      |             | .08 ± 0.21 £ 0 | 909           | 67.7                         |                             | 3.            |
| 2111 U3142 RSU 529 1.9 185. 2.3040.04E 04 60 55.0 12.48 1. U31NE RSU 237 5.1 L35. 3.3040.06E 02 300 12.48 117 1. U31NE RSU 247 5.1 L35. 3.3040.06E 02 300 12.48 119 1. U31NE RSU 248 5.0 L85. 5.5040.10E 02 200 29.28 119 1. U31NE RSU 241 2.6 L05. 2.8940.09E 03 30 65.8 1. U31NE RSE 501 0.2 L05. 4.4540.14E 01 200 30.4 1. FECES RSF 491 0.4 L85. 1.1840.03E 02 200 17.4 2 K10NEY RSE 386 5.6 025. 1.6540.51E-01 400 68.8 2 K10NEY RSE 191 3.3 025. 2.3440.91E-01 400 60.5 1 JUNE RSE 380 0.8 L85. 1.6540.61E 00 40.5 1 JUNE RSE 380 0.8 L85. 1.6540.01.00 40.5 1 JUNE RSE 570 13.7 L05. 1.6540.03E 02 600 60.68 1 JAACHEA RSE 570 13.7 L05. 1.6540.03E 02 600 60.68 1 JAACHEA RSE 380 0.8 L85. 1.6540.03E 02 600 60.68 1 JAACHEA RSE 570 13.7 L05. 1.6540.03E 02 600 60.68 1 JAACHEA RSE 381 2.9 025. R.0541.19E-01 1000 16.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | :            | HILAR         | E,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ö        | **          | .19 #2.37 E-0  | 9             | 59.7                         |                             | ~;            |
| 11. U31NE RSU 469 1.8 LRS. 5.1640.16E 03 100 07.9R 17 11. U31NE RSU 268 5.0 LBS. 5.5640.10E 02 200 29.2R 19 11. U31NE RSU 268 5.0 LBS. 1.2440.05E 02 30 65.8 11. U31NE RSU 268 5.0 LBS. 1.2440.09E 03 30 65.8 11. U31NE RSU 261 2.2 LRS. 1.2440.09E 03 30 65.8 11. FECES RSF 491 0.4 LBS. 1.1840.09E 03 30.4 11. EFT FEMUR RSB 386 5.6 025. 1.6540.91E-01 400 68.8 12. LLEFT FEMUR RSB 386 5.6 10840.09E 01 300 40.6R 13. LLNG RSK 380 0.8 LPS. 1.0840.09E 01 300 40.6R 14. LUNG RSK 380 0.2 025. 2.9440.91E-01 400 34.4 15. AACHEA RST 187 3.8 025. 2.9441.18E-01 400 34.4 16. G. 1. TAACHEA RST 187 3.8 025. 2.9441.18E-01 400 34.4 17. TAACHEA RST 187 3.8 025. 2.9441.18E-01 400 34.4 18. G. 1. TAACT RSS 670 13.7 LBS. 1.6540.03E 02 800 08.6R 19. U10 V. VICOSA RSW 381 2.9 025. R.OSA11.19E-01 1000 16.9R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43 | 1111         | ***           | 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 60          | .3040.046      | 9             | 55.0                         |                             | 7<br>4        |
| UAINE   RSU 288   5.0   185.   3.30 +0.06E 02   300   12.44   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 | : :          |               | 4 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        |             | .1640.16E 0    | 100           |                              |                             | #<br>~        |
| UNINE RSU 268- 5.0 LBS. 5.5C#C.10E 02 200 29.2R 19 UNINE RSU 349 2.2 LBS. 1.24+0.05E 02 30 65.8 UNINE RSU 241 2.6 LBS. 1.24+0.05E 02 30.4 FECES RSF 501 0.2 LBS. 4.45#0.14E 01 200 30.4 FECES RSF 491 0.4 LBS. 1.18#0.03E 02 200 17.4 2 KJONEY RSK 191 3.3 DZS. 2.34+0.91E-01 400 68.8 4 LUVG RSK 191 3.3 DZS. 2.34+0.91E-01 400 80.5 4 LUVG RSK 380 0.8 LBS. 1.08#0.06E 01 300 40.6R 5 HILAA NDDE RSH 185 0.2 DZS. 0.0C#0.61E 00 40 23.2 7 TAACHEA RST 187 3.8 DZS. 2.94+1.18E-01 400 34.4 8 G. 1. TAACH RSS 570 13.7 LBS. 1.65*00.03E 02 800 08.6R 10 V. WUJCHSA RSW 381 2.9 DZS. R.OS#1.19E-01 1000 16.9R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | :            | UA INE        | SU 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 'n       | جد :        | .30+0.06E      | 300           |                              |                             | 7             |
| UNINE RSU 349 2.2 LBS. L.2400.05E 02 30 65.8 2.8 UNINE RSU 241 2.6 L0S. 2.8940.09E 03 50 19.2R 22 LBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | :            | US 1NE        | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷        |             | .5C+0.10E 0    | 200           |                              |                             | 7             |
| UNINE RSU 241 2.6 LOS. 2.8940.09E G3 50 19.2M 22 FECES RSF 501 0.2 LOS. 4.4540.14E 01 200 30.4 FECES RSF 491 0.4 LBS. 1.1840.03E 02 200 17.4 17.4 -1 LEFT FEMUR RSB 386 5.6 DZS. 1.6540.51E-01 400 68.8 2 KJONEY RSK 191 3.3 DZS. 2.3440.91E-01 400 57.4 3 LIVER RSL 376 1.2 LBS. 6.1640.00E-01 400 80.5 4 LUVG RSK 380 0.8 LBS. 1.0840.06E 01 300 40.6R 5 HILAR NODE RSH 185 0.2 DZS. 0.0040.61E 00 40 23.2 7 TRACHEA RST 187 3.8 DZS. 2.9441.18E-01 400 34.4 8 G. 1. TRACH RSS 670 13.7 LBS. 1.6540.03E 02 800 08.6R 10 V. WUCOSA RSN 381 2.9 DZS. R.0541.19E-01 1000 16.9R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | •            | 03.1%         | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۲.       | 45          | .2440.05E 0    | 30            |                              |                             | _             |
| FECES RSF 501 0.2 LOS. 4.45#0.14E 01 200 30.4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | :            | 57170         | 2 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~        | 400         | .89 to.09 E C  | 20            |                              |                             | ~             |
| FECES RSF 491 0.4 LBS. 1.18#0.03E 02 200 17.4  - 1 LEFT FEMUR RSB 386 5.6 02S. 1.65#0.51E-01 400 68.8  2 KJONEY RSK 191 3.3 0ZS. 2.34#0.91E-01 400 57.4  3 LIVER RSL 376 1.2 LBS. 6.16#0.80E-01 400 80.5  4 LUVG RSK 380 0.8 LPS. 1.08#0.06E 01 300 40.6R  5 HILAR NODE RSH 185 0.2 0ZS. 0.0C#0.61E 00 40 23.2  7 74ACHEA RST 187 3.8 0ZS. 2.94#1.18E-01 400 34.4  8 G. 1. 74ACT RSS 670 13.7 LBS. 1.65#0.03E 02 800 08.6R  10 V. WUZUSA RSW 381 2.9 0ZS. R.05#1.19E-01 1000 16.9R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | :            | FECES         | SF 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ċ        | 105.        | .45 #0.14E 0   | 200           |                              |                             | Z<br>Z        |
| - I LEFT FEMUR RSB 386 5.6 025. 1.65#0.51E-01 400 68<br>2 KIDNEY RSK 191 3.3 DZS. 2.34#0.91E-01 400 87<br>3 LIVER RSL 376 1.2 LBS. 6.15#0.80E-01 400 80<br>4 LUVG RSK 380 0.8 LBS. 1.08#0.06E 01 300 40<br>5 HILAR NODE RSH 185 0.2 DZS. 0.0C#0.61E 00 40 23<br>7 TRACHEA RST 187 3.8 0ZS. 2.94#1.18E-01 400 34<br>8 G. 1. TMACT RSS 670 13.7 LBS. 1.65#0.03E 02 800 08<br>10 V. WICHSA RSH 381 2.9 DZS. 8.0S#1.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | :            | FECES         | SF 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ċ        | 185.        | .1810.036 0    | 200           | •                            |                             | x<br>~        |
| Z KIDNEY RSK 191 3.3 DZS. Z.34+0.91E-01 400 57 3 LIVE? RSL 376 1.2 LBS. 6.16+0.80E-01 400 80 4 LUVG RSK 380 0.8 LPS. 1.08+0.06E 01 300 40 58 HILA2 NDDE RSH 185 0.2 DZS. 0.06+0.61E 00 40 23 7 74ACHEA RST 187 3.8 DZS. Z.94+1.18E-01 400 34 8 G. 1. 74ACT RSS 670 13.7 LBS. 1.65+0.03E UZ 800 08 10 V. WUCHSA RSW 381 2.9 DZS. R.05+1.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 2112 -       | 1 LEFT FEMUR  | 58 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.       | 025.        | .65+0.51E-0    | 400           |                              |                             |               |
| LIVE? RSL 376 1.2 LBS. 6.16+0.AUE-01 400 80<br>LUVG RSK 380 0.8 LMS. 1.08+0.06E 01 300 40<br>HILA? NODE RSH 185 0.2 0.2. 0.0G+0.61E 00 40 23<br>TAACHEA RST 187 3.8 0.25. 2.94+1.18E-01 400 34<br>G. 1. TAACT RSS 670 13.7 LBS. 1.65+0.03E 0.2 800 08<br>V. WUCOSA RSW 381 2.9 0.25. 8.05+1.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | •            |               | SK 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m        | . \$ 70     | .34 t0.91 E-0  | 400           |                              |                             |               |
| LUVG HILAR NODE HSH 185 0.2 0.25. 0.00 +0.06 E 01 300 +0 HILAR NODE HSH 185 0.2 0.25. 0.00 +0.05 E 00 TAACHEA AST 187 3.8 0.25. 2.9 + 1.18 E -01 +0.0 3 + G. 1. TAACT RSS 670 13.7 LBS. 1.65 +0.03 E 0.2 800 08 Y. WICHSA RSW 381 2.9 0.25. 8.05 +1.19 E -01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | :            |               | SL 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | .05.        | .15 tO.AUE-0   | 400           |                              |                             |               |
| HILAN NODE KSH 185 0.2 0.25. 0.00 to .61E 00 40 23 TAACHEA RST 187 3.8 0.25. 2.94 to 18E-01 400 34 G. 1. TAACT RSS 670 13.7 LBS. 1.65 to .03E 0.2 800 08 Y. WICHSA RSW 381 2.9 0.25. 8.05 to .19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | :            |               | SK 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ċ        | L P. S.     | .08 to.05E 0   | 300           | 40.64                        |                             |               |
| TAACHEA RST 187 3.8 025. 2.9441.18E-01 400 34<br>G. 1. TAACT RSS 670 13.7 LBS. 1.6540.03E U2 800 08<br>Y. WICHSA RSW 381 2.9 025. R.OS41.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | :            |               | 84 FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ċ        | ÷           | .0C +0.61E 0   | 9             | 23.5                         |                             |               |
| G. 1. PA4CT RSS 670 13.7 LBS. 1.65+0.03E UZ 800 08 Y. WILDSA RSH 381 2.9 025. 8.05+1.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | :            |               | ST 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u> | 025.        | .941.186-0     | 400           | 34.4                         |                             |               |
| 4. WITOSA RSH 381 2.9 025. R.OS+1.19E-01 1000 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | •            | -             | 55 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.      | 105.        | 0 360.0489.    | 800           | 89.80                        |                             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | :            | ÷             | SN 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~        | .\$70       | .0541.19E-0    | 1000          | 16.9R                        |                             |               |

| TABLE E.8     | E. 8                                                          | 1                                            |                                                          |                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                         |
|---------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| AVINA<br>AUS. | SAMPL                                                         |                                              | WET<br>WEIGHT                                            | PU 239, 240<br>ACTIVITY<br>(DPM)                                 | COUNT<br>TIME                   | VIELD<br>(R.RE-<br>KORK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | URAN IUN<br>IN ICRO<br>GRANS)             | REMARKS                                 |
| 2119 -        | 1                                                             | #<br>1                                       | !<br>}                                                   | 1                                                                | 99                              | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| :::           | S LIVES<br>4 LUNG<br>5 HILAR NODE                             | * * * * * * * * * * * * * * * * * * *        | 14.5                                                     | 5.84#0.37E<br>1.04#0.52E                                         | 1000                            | 144<br>16.1<br>54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                         |
| 2124 -        | 1 LEFT FEHUR<br>2 KIDNEY<br>3 LIVER                           | JK R SB 569<br>R SK 515<br>R SL 506          | 5.3 025.<br>3.8 025.<br>1.6 LRS.                         | . 1.15*2.31E-0;<br>. 0.00*0.22E 00<br>. 1.16*0.16E 00            | 9 4 0<br>0 0 0                  | 40.9<br>63.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                         |
| ::            | 4 LUNG HODE                                                   | R SR<br>S H                                  | 1.1                                                      | 1.40 \$0.22E<br>7.20 \$0.72E                                     | 009<br>900                      | 23.6R<br>71.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                         |
| 240           | 1 LEFT FEHUR<br>2 KIDNEY<br>3 LIVER<br>4 LUNG                 | R SS 416<br>R SK 445<br>R SL 417<br>R SR 478 | 5.8 025.<br>3.6 025.<br>1.6 LBS.                         | 8.3046.70E-02<br>1.0742.13E-01<br>1.7540.17E 00<br>3.6040.13E 01 | 400<br>40<br>1000<br>600        | 28 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.31 C.S. 11 0.423 C.S. 6.5. 0.316 C.S.   | 11 2 PIECES ONLY                        |
| 2128          | S HILAR NOJE LEFT FEHUR Z KIONEY 3 LEVER 4 LUNG S HILAR NODE  | A A A A A A A A A A A A A A A A A A A        | 5.2<br>3.2<br>1.1<br>15.7                                |                                                                  | 600<br>500<br>400<br>400        | 58 -0<br>115 -0<br>12 -0<br>13 -0<br>14 -0<br>15 -0 | 2 9 2 -                                   |                                         |
| 2129          | 1 LEFT FEHUR<br>2 KIONEY<br>3 LIVER<br>4 LUNG<br>5 HILAR NOSE | R R S S S S S S S S S S S S S S S S S S      | 6.3 325.<br>6.9 025.<br>1.9 tes.<br>1.1 tes.<br>0.3 025. | 0.00*0.22£ 00<br>0.98*1.14£-01<br>9.47*4.21E-01<br>9.20*1.20£-01 | 100<br>100<br>100<br>300<br>500 | 24.5<br>34.7<br>26.98<br>61.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                         |

. NEW DATA THIS REPORT

| (CONTINUED) |
|-------------|
| е<br>6      |
| TABLE       |

\*\*

| _           |  |
|-------------|--|
| בֻ<br>בַּ   |  |
| 5           |  |
| 2           |  |
| ž           |  |
| (CONTINUED) |  |
|             |  |
| Э.<br>9.    |  |
|             |  |
| Ξ           |  |
| LABLE       |  |
| -           |  |

| 7                                       | SAYP                                                                                                                | TLW<br>NO.                                                                                                                                               | WET WEIGHT                                                                                      | PU 239, 240<br>ACTIVITY<br>(BPH)                                                                                                                                                        | COUNT<br>TIME                                                      | Y 1 EL D<br>(R *RE-<br>WOW)                 | URAN1UM<br>(M fCRO<br>URANS) | REMARI                                                       |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|------------------------------|--------------------------------------------------------------|
| 7                                       | 1 LEFT FEHUR 2 KIDNEY 3 LIVER 4 LUNG 5 HILAR NOJE 7 TAACHEA 6 G. I. TRACT 0 N. HUCOSA 1 LEFT FEHUR 2 KIDNEY 3 LIVER | R SB 601<br>R SC 575<br>R SC 575<br>R SC 575<br>R SC 540<br>R SC 568<br>R SC 568 | 3.2 025.<br>16.1 025.<br>16.1 025.<br>11.9 025.<br>3.0 025.<br>3.0 025.<br>4.9 025.<br>4.9 025. | 0.0040.28E 00<br>1.7543.50E-01<br>2.6340.37E-01<br>3.7240.11E 01<br>7.9045.20E-02<br>1.6740.06E 01<br>5.3040.38E 01<br>5.9740.40E 00<br>4.2640.17E 00<br>4.2640.17E 00<br>4.2640.19E-01 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6     | 0.297                        |                                                              |
|                                         | S HILA1 NODE UNINE UNINE UNINE UNINE UNINE VAINE                                                                    |                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                         | 40<br>20<br>300<br>300<br>900<br>900                               | 25 22 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     |                              | 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                     |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | LIVER<br>JUNE<br>UNINE<br>UNINE<br>UNINE<br>FECES                                                                   | RSE 356<br>RSL 345<br>RSU 468<br>RSU 32<br>RSU 404<br>RSU 29<br>RSF 537                                                                                  | 6.3 025.<br>1.3 L85.<br>1.4 L85.<br>3.6 L85.<br>2.9 L85.<br>1.0 L85.<br>1.0 L85.                |                                                                                                                                                                                         | 600<br>400<br>200<br>200<br>1000<br>90                             | 44.04 W W W W W W W W W W W W W W W W W W W |                              | C.S. 11<br>C.S. 11<br>12 HAY<br>22 JUNE<br>22 JUNE<br>12 HAY |

. NEW DATA THIS REPORT

| REMARKS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IEO RY ELIMINATION<br>TAGGED •VOMÍTED•                                                                                                                                                                                                                                       | •   |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| URANIUM<br>IMICRO<br>GRAMS)       | 0.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.196<br>10ENT IF I E0<br>7AG                                                                                                                                                                                                                                                |     |
| Y 1 EL D<br>( R = R E -<br>MORK ) | 25.6<br>64.0<br>64.2<br>57.1<br>57.1<br>59.3<br>59.3<br>10.8<br>10.8<br>10.8<br>10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                      | ) ( |
|                                   | 1,000<br>800<br>800<br>800<br>1,000<br>1,000<br>1,000<br>1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100<br>500<br>500<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                                                                                                                                                                                              |     |
| PU 239, 240<br>ACTIVITY<br>(DPH)  | 2.15#0.14E 00<br>0.00#0.72E 00<br>5.53#0.72E-01<br>6.90#0.95£-01<br>1.24#2.48E 31<br>0.00#0.62E 00<br>6.60#5.60E-02<br>2.11#0.53E-01<br>5.88#0.19E 01<br>8.40#3.40E-02<br>7.65#0.35E 00<br>1.36#0.02E 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.69#2.53E-01<br>1.32#2.63E-01<br>5.80#1.20E-01<br>5.19#0.27E 00<br>0.00#0.14E 00<br>0.00#0.16E 01<br>4.62#1.76E-01<br>7.68#0.26E-01<br>7.19#0.25E 01<br>6.05#0.25E 01<br>6.05#0.25E 01<br>6.05#0.25E 01<br>7.19#0.25E 01<br>7.19#0.25E 01<br>6.05#0.12E 01<br>7.75#0.12E 01 |     |
| WET<br>WEIGHT                     | 5.2 025.<br>1.2 L65.<br>1.2 025.<br>0.2 025.<br>5.9 025.<br>3.0 025.<br>1.0 L85.<br>1.0 L85.<br>0.2 025.<br>3.6 L85.<br>3.6 L85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1 025.<br>1.3 185.<br>16.2 025.<br>0.2 025.<br>13.0 185.<br>3.0 025.<br>1.3 185.<br>1.3 185.<br>1.3 185.<br>1.4 185.<br>1.4 185.<br>1.5 2 025.                                                                                                                             | •   |
| TLK<br>NO.                        | RSB 580<br>RSK 512<br>RSL 505<br>RSR 565<br>RSA 391<br>RSL 374<br>RSL 374<br>RSL 374<br>RST 189<br>RST 189<br>RST 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R S S R S S R S S R S R S R S R S R S R                                                                                                                                                                                                                                      | •   |
| SAMPLE<br>TYPE                    | LEFT FEMUR<br>KIDNEY<br>LIVES<br>LUNG<br>HILAS NOJE<br>HILAS NOJE<br>LIVES<br>LIVES<br>LIVES<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE<br>HILAS NOJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LEFT FEMUR<br>KIONEY<br>LIVEN<br>LUNG<br>HILAN NODE<br>TACHEA<br>G. 1. TACT<br>N. MUCOSA<br>LUNG<br>LIVEN<br>LIVEN<br>TACHEA<br>TACHEA<br>G. 1. TRACT                                                                                                                        | •   |
| - CX                              | 22.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2.79 - 2. |                                                                                                                                                                                                                                                                              |     |

CONFIDENTIAL

•4

| SAMPLE TLW WET PU 239, 240 COUNT YIELD URANIUM TYPE NO. WEIGHT ACTIVITY TIME (R=KE- (MICRO ICPM) MOR4] CRAMS URINE RSU 265 4.6 LBS. 3.60+0.13E 01 500 14.2R DATE URINE RSU 535 1.5 LBS. 1.28+0.03E 04 20 62.8 URINE RSU 465 2-1 LBS. 4.43+0.10E 03 30 56.1 URINE RSU 463 5.8 LBS. 1.04+0.03E 03 20 10.1R FECES RSF 464 0.7 LBS. 5.54+0.16E 01 300 27.7R FECES RSF 550 2.7 LBS. 3.19+0.04E 03 200 21.0R FECES RSF 550 2.7 LBS. 1.00+0.02E 02 200 23.0R | TABLE         | E.6     | UED)       |           |                                  |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------------|-----------|----------------------------------|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URINE RSU 265 4.6 LBS. 3.60+0.13E 01 500 14.2R DATE URINE RSU 535 1.5 LBS. 1.28+0.03E 04 20 62.8 LRSU 4.5 2.1 LBS. 4.43+0.10E 03 30 56.1 RSU 403 5.8 LBS. 1.04+0.03E 03 20 10.1R RSU 403 5.8 LBS. 1.04+0.03E 03 20 10.1R RSU 30 4.5 LBS. 6.62+0.19E 01 700 34.°° FECES RSF 464 0.7 LBS. 5.54+0.16E 01 300 27.7R FECES RSF 551 1.1 LBS. 3.19+0.04E 03 200 21.0R FECES RSF 540 5.8 LBS. 1.00+0.02E 02 200 23.8R                                         | AVIVAL<br>NO. | 1<br>1  | TLW<br>NO. | WEIGHT    | PU 239, 240<br>ACTIVITY<br>(CPH) | COUNT | YIRD<br>(R=RE- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RSU 535 1.5 LBS. 1.28 +0.03 E 04  20  62.6<br>RSU 455 2.1 LBS. 4.43 +0.10 E 03  30  56.1<br>RSU 403 5.8 LBS. 1.04 +0.03 E 03  20 10.1R<br>RSU 30 4.5 LBS. 6.62 +0.19 E 01 700 34.7<br>RSF 464 0.7 LBS. 5.54 +0.16 E 01 300 27.7R<br>RSF 550 2.7 LBS. 3.19 +0.04 E 03 200 23.8R<br>RSF 550 2.7 LBS. 1.00 +0.02 E 02 200 23.8R                                                                                                                          | .0.           | UN INE  | , ~        | 4.6 LBS.  |                                  | 500   | 14.28          | C TOTAL TOTAL STREET, |
| RSU 455 2-1 LBS. 4-43+0-10E 03 30 56-1<br>RSU 403 5-8 LBS. 1-04+0-03E 03 20 10-1R<br>RSU 30 4-5 LBS. 6-62+0-19E 01 700 34-7<br>RSF 464 0-7 LBS. 5-54+0-16E 01 300 27-7R<br>RSF 551 1-1 LBS. 3-19+0-04E 03 200 21-0R<br>RSF 550 2-7 LBS. 1-00+0-02E 02 200 23-8R<br>ASF 240 5-8 LBS.                                                                                                                                                                   | :             | U3 INE  | RSU 535    | 1.5 1.85. |                                  | 200   | A2.8           | 2 - 1010 101 101 101 101 101 101 101 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RSU 403 5.6 LBS. E.04+0.03E 03 20 10.1R<br>RSU 30 4.5 LBS. 6.62+0.19E 01 700 34.7<br>RSF 464 0.7 LBS. 5.54+0.16E 01 300 27.7R<br>RSF 551 1.1 LBS. 3.19+0.04E 03 200 21.0R<br>RSF 550 2.7 LBS. 1.00+0.02E 02 200 23.8R<br>ASF 240 5.8 LBS.                                                                                                                                                                                                             | :             | US INE  | SU 4       | 2.1 LBS.  |                                  | 90    | 1, 40          | > 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RSU 30 4.5 LBS. 6.62#0.19E 01 700 34.7f<br>RSF 464 0.7 LBS. 5.54#0.16E 01 300 27.7R<br>RSF 551 1.1 LBS. 3.19#0.04E 03 200 21.0R<br>RSF 550 2.7 LBS. 1.00#0.02E 02 200 23.8R<br>ASF 240 5.8 LBS.                                                                                                                                                                                                                                                       | :             | U3 1 V. | 4          | 5.6 1.85. |                                  | 2 2   | 10 TB          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RSF 464 0.7 LBS. 5.54#0.16£ 01 300 27.7R<br>RSF 551 1.1 LBS. 3.19#0.04£ 03 200 21.0R<br>RSF 550 2.7 LBS. 1.00#0.02E 02 200 23.8R<br>RSF 240 5.8 LBS.                                                                                                                                                                                                                                                                                                  | :             | UN INE  |            | 4.5 LBS.  |                                  | 200   | 36.08          | 20 C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RSF 551 1.1 LBS. 3.19#0.04£ 03 200 21.0R<br>RSF 550 2.7 LBS. 1.00#0.02E 02 200 23.8R<br>RSF 240 5.8 LBS.                                                                                                                                                                                                                                                                                                                                              | :             | FECES   | RSF 464    | 0.7 185.  |                                  | 300   | 27 78          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ASF 550 2.7 LBS. 1.00#0.02E 02 200 23.8R<br>ASF 240 5.8 LBS.                                                                                                                                                                                                                                                                                                                                                                                          | :             | FECES   | RSF 551    | 1.1 185.  |                                  | 200   | 20° ( 6        | >4 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S ASF 240 5.8 LBS.                                                                                                                                                                                                                                                                                                                                                                                                                                    | :             | FECES   | ASF 550    | 2.7 185.  |                                  | 000   | 21.82          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :             | FECES   | RSF 240    | 5.8 LBS.  |                                  | 2     |                | D + 30 LOST IN DISS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

CONFIDENTIAL

FECES

FE

TABLE E.7 (CONTINUED)

| REHARKS                          |                                                                                   | FOUND 11/29/64                                                         | TAGGED X258-8                                                                                                                                                                                                |
|----------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URAN IUM<br>(MICRO<br>GRANS)     |                                                                                   |                                                                        |                                                                                                                                                                                                              |
| Y 13.0<br>(R=RE-<br>HORK)        | 18.1<br>18.6<br>37.6<br>25.0                                                      | 13.00<br>42.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                        |
| COUNT<br>TIME                    | 200<br>1000<br>200<br>1000<br>900                                                 | 200<br>200<br>200<br>200                                               | 200<br>200<br>200<br>1000<br>1000<br>1000<br>200<br>200<br>200<br>2                                                                                                                                          |
| PU 239, 240<br>ACTIVITY<br>(DPM) | 1.7040.46E 00<br>1.0641.50E-01<br>1.60+0.06E 01<br>1.64+0.04E 01<br>3.92+0.79E-01 | 4.72#0.49E 00<br>6.86#0.27E 01<br>2.46#0.21E 00<br>1.59#0.12E 00       | 1.59*0.22£ 00<br>4.29*0.13£ 01<br>-0.74*1.48£-01<br>1.39*0.14£ C0<br>1.97*5.10£-01<br>1.31*0.05£ 01<br>6.68*0.35£ 00<br>-0.70*4.20£-02<br>1.68*0.39£ 00<br>0.29*1.50£-01<br>2.67*0.12£ 01<br>7.20\$\$.00€-02 |
| WET<br>WEIGHT                    | 2.3 LBS.<br>1.7 LBS.<br>8.3 LBS.<br>3.3 LBS.<br>1.0 02S.                          | 2.0 LBS.<br>5.2 LBS.<br>0.4 02S.<br>2.2 LBS.                           | 185.<br>185.<br>185.<br>185.<br>185.<br>185.<br>185.<br>185.                                                                                                                                                 |
| TLW<br>ND.                       | RBB 120<br>RBK 10<br>RBL 17<br>RBR 459<br>RBH 3                                   | RBK 41<br>RBL 103<br>RB4 46<br>RB8 225                                 |                                                                                                                                                                                                              |
| AVIHAL SAMPLE<br>ND. TYPE        | LEFT FEMUR<br>KIDNEY<br>LIVER<br>LUNG<br>HILAR NOJE                               |                                                                        | TACHEA<br>G. I. TRACT<br>P. MUSOSA<br>LEFT FEHUR<br>KIDNEY<br>LUNG<br>HILAR NODE<br>LEFT FEHUR<br>KIONEY<br>LIVER<br>LUNG                                                                                    |
| AVIMAL<br>ND.                    | 3023                                                                              | 1 2029                                                                 |                                                                                                                                                                                                              |

. NEW DATA THIS REPORT

247 CONFIDENTIAL

| 3039 - 1 LEFT FEMUR 1 2 KIONEY 2 KIONEY 3 LIVER 1 5 HILAR NOJE 1 6 A 1GHT FEMUR 2 KIONEY 3041 - 1 LEFT FEMUR 3041 - 1 LEFT FEMUR 3043 - 1 LEFT FEMUR 3043 - 1 LEFT FEMUR 3 LIVER 3 LIVER 3 LIVER 3 LIVER 3 LIVER 4 LUNG 1 5 HILAR NOJE 3 LIVER 3 LIVER 4 LUNG 1 5 HILAR NOJE 3 LIVER 4 LUNG 1 6 HILAR NOJE 3 LIVER 5 HILAR NOJE 6 HILAR NOJE 7 A LUNG 7 A LUNG 7 A LUNG 8 HILAR NOJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EMUR RBB<br>RBC<br>NOJE RBH<br>FEMUR RBB<br>TAACT RBS<br>TRACT RBS<br>TRACT RBS<br>TRACT RBS<br>TRACT RBS | 2                                             | MET MET 1.9 LBS 2.0 LBS 2.5 LBS 2.5 LBS 2.5 CS 5.5 | GHT<br>LBS.<br>LBS.<br>LBS.           | PU 239, 240<br>ACTIVITY<br>(DPH) | COUNT | Y 1 EL O<br>( R *R E- | UR AN TUM | REMARK S          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-------|-----------------------|-----------|-------------------|
| - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * * * + + + * * * * * * * * * * * * * *                                                                   | .   4 6 6 7 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # 88.5<br>85.5<br>85.5<br>85.5        | ACTIVITY (DPM)                   | T ME  | XXX                   |           |                   |
| L LEFT L SALINGS | t<br>}<br>1                                                                                               | SHEN BRANCHORN                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                  | ,     | MORK )                | GRAMS 1   |                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec                                                                                                        | SEEN BAAGANGE                                 | 0 8 40 0 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.<br>85.                            | .85#3.14E-0                      | 200   | 22.6                  |           |                   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>α ⊢⊢</b>                                                                                               | SHEN BAFBANGE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .85.                                  | 0.44*1.10E-01                    | 200   | 53.7                  |           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cc +-                                                                                                     | SHEN BARBAND                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .85.                                  | .52#0.07E 0                      | 200   | 44.2                  |           |                   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | æ <b>⊢ ⊢</b>                                                                                              | SEEN UPFS                                     | NO @ @ NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | .28 #0.06E 0                     | 300   | 19.4                  | 0.610     |                   |
| 1 LEFT A LUNG A  | <b>K</b> ++                                                                                               | SHEN BAFF                                     | 0 6 6 6 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 57                                  | .91 *0.50 E                      | 1000  | 59.3                  |           |                   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>                                                                                                   | SHEN BARS                                     | 995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .85.                                  | 8.33#2.48E-01                    | 1000  | 12.6                  |           |                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>                                                                                                   | SHEN BAR                                      | <b>8</b> N 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .85.                                  |                                  |       |                       | FOUND     | Ë                 |
| 1 LEFT A LUNG A  | <b>-</b>                                                                                                  | 3 WHW 5                                       | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .88.                                  | 3.62#0.11E 01                    | 300   | 32.3                  |           | NUMBER DUPLICATED |
| - 1 LEFT A HILAR - 1 LUNGA - 1 |                                                                                                           | 2 2 2 2                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .BS.                                  | 0                                | 200   | 29.3                  |           | LICATE            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 2 1 1 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .520                                  | .93 *1.30 E-                     | 300   | 51.0                  |           |                   |
| 1 I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | 2 1                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A.                                    | 99#0.36F 0                       | 200   | 26.1                  |           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 2 10                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.                                   | .34#0.17E 0                      | 300   | 46.7                  |           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 5                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.                                   | .09+0.14E                        | 200   | 18.2                  |           |                   |
| 1 1 1 1 1 1 mm+m4t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                               | 2.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LBS.                                  |                                  | 300   | 39.1                  |           |                   |
| 1 1 managa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           | -                                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .57(                                  | .00*6.00E-0                      | 1000  | 4.19                  |           |                   |
| 1<br>Nutu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                                                                                                        | 294                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.                                   | 1.68+0.15E 00                    | 300   | 84.8                  |           |                   |
| 1<br>W45 20045041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88<br>X                                                                                                   | 258                                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85                                   | 4.00#0.60E-01                    | 500   | 59.9                  |           | TAGGED X258-2     |
| 1 WWAWAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB L                                                                                                      | 301                                           | 5.1 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LBS.                                  | 4.60#0.226 01                    | 1000  | 04.7A                 |           |                   |
| 1<br>N 2004840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           | 581                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85                                   | 2.53#0.08E 03                    | 300   | 18.9                  |           |                   |
| 1<br>~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB +                                                                                                      | 233.                                          | <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .57(                                  | 5.50#1.20E-01                    | 400   | 47.0                  |           |                   |
| 14 m 4 m 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           | 208                                           | <b>@</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .8S.                                  | 1.70#0.14E 00                    | 004   | 68.1                  |           |                   |
| W 4 NV 40 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88 K                                                                                                      | 96                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LBS.                                  | 1.00 #0.75E-01                   | 004   | 50.3                  |           |                   |
| 4 10 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           | 106                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85.                                  | 9.43+0.34E 01                    | 900   | 10.4                  |           |                   |
| w 4 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           | 495                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85.                                  | 2.47#0.05E 02                    | 200   | 25.18                 | 0.344     |                   |
| 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | æ                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125.                                  | 7.60 \$7.60 E-02                 | 200   | 62.4                  |           |                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 883                                                                                                       | 252                                           | 3.1 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LBS.                                  | 1.85 to . 18E 00                 | 200   | 15.4                  |           |                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | 9.6                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85.                                  | 7.85*0.33E OL                    | 200   | 42.1                  | •         |                   |
| Ġ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AB S                                                                                                      | 647                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .85.                                  | 9.50 to.22E 01                   | 200   | 46.2R                 |           |                   |
| ** 10 4. MUCOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R8 N                                                                                                      | 596                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .570                                  | 1.13#0.08E 01                    | 1000  | 08.2R                 |           |                   |
| 3053 - 1 LEFT FEHUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TUR RBB                                                                                                   | 611                                           | 3.2 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 185.                                  | 1.71+0.186 00                    | 1000  | 16.9R                 |           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                  |       |                       |           |                   |

TABLE E.7 (CONTINUED)

| D URANIUM REMARKS<br>E- (MICRO<br>) GRANSI | R RENJAKED THICE                                                                  | ec ec ec                                      | TAGGED X258-4                                                    | ææ                                                               | σ≼                                                               |
|--------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Y 18.0<br>(A=RE-<br>HORC.)                 | 61.9<br>25.5<br>02.08<br>25.1                                                     | 04000                                         | 28.7<br>12.0<br>67.5<br>28.9                                     | 65.4<br>62.9<br>09.1R<br>16.1R<br>40.8                           | 19.1<br>04.58<br>50.5<br>7.6.7                                   |
| CDUNT<br>T IME                             | 400<br>700<br>1000<br>200<br>600                                                  | 200<br>500<br>500<br>700<br>700<br>700<br>700 | 400<br>1000<br>900<br>200                                        | 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          | 200<br>200<br>400                                                |
| PU 239, 240<br>ACTIVITY<br>(DPM)           | 2.01#0.16E 00<br>3.49#0.73E-01<br>7.49#0.50E 01<br>2.94#0.09E 03<br>4.77#0.52E-01 |                                               | 1.35*0.07E 01<br>5.38*0.37E 00<br>5.59*2.80E-02<br>5.13*0.20E 01 | 1.46#0.12E 00<br>8.64#0.34E 00<br>1.26#0.09E 01<br>5.98#0.48E 00 | 1.60+0.29E 00<br>5.91+0.31E 01<br>9.22+0.51E 00<br>4.00#5.00E-02 |
| WET WEIGHT                                 | 2.0 LBS.<br>2.0 LBS.<br>8.5 LBS.<br>3.6 LBS.<br>0.5 OZS.                          |                                               | 5.0 t85.<br>3.1 t85.<br>0.9 025.<br>3.3 t85.                     | 2.7 LBS.<br>1.6 LBS.<br>8.6 LBS.<br>3.6 LBS.                     | 1.3 L8S.<br>5.1 L9S.<br>3.7 L9S.<br>0.3 QZS.                     |
| TLW<br>NO.                                 | RB 263<br>RB 131<br>RBL 127<br>RBR 533<br>RBH 126                                 | 8×-4× 8×                                      | RBL 253<br>RBR 602<br>RBH 228<br>RBH 582                         | RBB 322<br>RBK 256<br>RBL 222<br>RBR 560<br>RBH 229              | RBK 254<br>781 251<br>RB4 585<br>784 231                         |
| SAMPLE<br>TYPE                             | 1 LEFT FENUR 2 KIDNEY 3 LIVER 4 LUNG 5 HILAR NODE                                 |                                               | 3 L1VER<br>4 LUVG<br>5 HILA1 NODE<br>4 LUNG                      | 1 LEFT FEHUR<br>2 KIDNEY<br>3 LIVER<br>4 LUNG<br>5 HILAR NODE    | Z KIDVEY<br>3 LIVER<br>4 LUVG<br>5 HILAR 1006                    |
| AVINAL<br>NO.                              | 3055 - 1                                                                          | 3074 - 23                                     | 3 000                                                            | 102                                                              | 3103 - 201E                                                      |

. WEN DATA THIS REPORT

TABLE E.7 (CONTINUED)

| ¥I NA<br>CV                                                    | SAMPLE<br>TYPE                                                                                           | ⊢ Z                                                                               | WE IGHT                                             | <u>=</u>                                                     | PU 239, 240<br>ACTIVITY<br>(DPM)                                                                                                                      | COUNT<br>TIME                               | Y 18.0<br>(R #RE-<br>NOR()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | URANIUM<br>(HICRO<br>GRAMS) | REHARK S          |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|
| 3105 - 12                                                      | LEFT FEHUR<br>KIDNEY<br>LIYER<br>LUNG<br>HILAR NODE                                                      | R8B 261<br>R8K 128<br>R8L 195<br>RER 527<br>RBH 123                               | 2.5 L8<br>1.9 L8<br>4.8 L8                          | 185. 1<br>185. 2<br>185. 2<br>185. 6                         | 1.67*0.22E 00<br>2.50*1.10E-01<br>3.40*0.13E 01<br>6.20*0.23E 01<br>1.90*7.60E-02                                                                     | 200<br>400<br>200<br>200<br>200             | 46.0<br>43.9<br>10.58<br>28.9<br>62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                   |
| 3108 - 1<br>11 2<br>11 3<br>3109 - 3                           | LEFT FEMUR<br>KIONEY<br>LIVER<br>HILAR NODE                                                              | R88 352<br>R8K 255<br>R8L 289<br>R8H 232                                          | 2.8 105<br>1.3 185<br>7.4 185<br>0.6 025<br>5.0 185 |                                                              | 2.55+0.22E 00<br>4.42+0.49E-01<br>8.18+0.21E 01<br>1.92+0.44E-01<br>5.06+0.16E 01                                                                     | 400<br>300<br>400<br>1000                   | 37.6<br>75.1R<br>42.8R<br>77.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAGGED LIVER.               | IVER, BUT IS LUNG |
| m<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1 | LEFT FEMUR<br>KIONEY<br>LIVEY<br>LUNG<br>HILAN NODE<br>AIGHT FEMUR<br>TACHEA<br>G. I. TAACT<br>P. MUCGSA | RBB 221<br>RBK 42<br>RBL 101<br>RBR 493<br>RBB 259<br>RB 599<br>RBS 656<br>RBP 44 | 3.00 LB                                             | LBS:<br>LBS:<br>LBS:<br>LBS:<br>LBS:<br>LBS:<br>LBS:<br>LBS: | 1.94+0.13E 00<br>3.11+1.12E-01<br>5.96+0.25E 01<br>5.28+0.14E 01<br>0.84+1.18E-01<br>1.75+0.17E 00<br>1.74+0.06E 01<br>2.78+0.10E 01<br>1.00+1.30E-01 | 800<br>2000<br>2000<br>2000<br>2000<br>2000 | 44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44.45<br>44 | 0.389                       |                   |
| 1 1                                                            |                                                                                                          |                                                                                   | ~ 0 & 9 i 8                                         |                                                              | 6.01+3.34E-01<br>9.81+2.90E-01<br>3.55+0.09E 01<br>1.84+0.06E 01<br>4.10+8.00E-02                                                                     | 1000<br>400<br>1000<br>400                  | 117.7<br>06.9<br>21.5<br>55.9<br>67.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                   |
| * * * * * * * * * * * * * * * * * * *                          | 3 : 1 VE 4<br>4 LUVG<br>5 HILA? NOJE<br>0ATA THIS REPOR                                                  | RBL 293<br>КВR 600<br>КВН 235                                                     | 3.2 LA<br>0.9 Q2                                    | LAS.<br>025.                                                 | 5.64+0.23E 01<br>1.10+0.03E 02<br>0.00+0.16E 00                                                                                                       | 1000<br>300<br>60                           | 93.48<br>59.6<br>59.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                           | TAGGED X258-4     |

| REMARKS                          |               |              |             |           |           |               |             |            |                  |            |               |               |              |           |           |               |               |            |            |            | NUMBER DUPLICATED | A DUPLICATE |            |           |             |           |            |               |          |      |
|----------------------------------|---------------|--------------|-------------|-----------|-----------|---------------|-------------|------------|------------------|------------|---------------|---------------|--------------|-----------|-----------|---------------|---------------|------------|------------|------------|-------------------|-------------|------------|-----------|-------------|-----------|------------|---------------|----------|------|
| URANIUM<br>(MICRO<br>GRANS)      |               |              |             |           |           |               |             |            |                  |            |               |               |              |           |           |               |               |            |            |            |                   |             |            |           |             |           |            |               |          |      |
| YIBLD<br>(R=RE-<br>WORK)         | 50.3          | 50 .7        | 29.4        | 21.0R     | 10.6R     | 67.6          | 66.3        | 6.44       | 26.46            | 30.05      | 72.3          | 06.0R         | 45.7         | _         | 10.2      | $\overline{}$ | 58.5          | ~          | œ          | 36.2       | M                 | ~           | ~          | -         | -           | 0         | 9          | 4.19          | •        | •    |
| COUNT<br>7 1ME                   | 200           | 400          | 700         | 1000      | 1000      | 200           | 500         | 904        | 9 6              | 000        | 400           | 1000          | 200          | 1000      | 1000      | 300           | 1000          | 200        | 200        | 200        | 200               | 900         | 200        | 1000      | 200         | 200       | 300        | 200           | 000      | ?    |
| PU 239, 240<br>ACTIVITY<br>(DPM) | 1.62#0.14E 00 | .84#0.17E    | .51 #0.28 E | .69#0.17E | .61#0.49E | 7.68#1.19E-01 | .89±0.21F 0 | . 48±0.11F | . 40 ±0 - 17 F 0 | 42#0.22F 0 | 2.1844.356-02 | 1.05*0.100 00 | .08#0.17E    | .09#0.14E | .53#0.10E | .35#0.05E     | 8.7043.00E-02 | .79#1.17E- | .35 to.16E | .36 +0.33E | .89+1.56E-        | .6940.15E   | .03#0.36E  | .06+0.14E | .58 to. 13£ | .81#0.10E | .10#3.80E- | 2.01#0.06E 01 | A140.27F | 3.7. |
| ET<br>I GH                       | 2.2 LBS.      | ~            | .9 185      | .4 LBS    | .8 1.85   | .220 4.0      | 4           | 4          | , Y              |            | 0.4 025.      | 8.3 025.      | ~            | م         | 0         | ~             | 0.3 025.      | ~          | •          |            |                   | 0           | 2 18       | 9 LES     | 4 1.85      | 3 LAS     | 570 5      | 2.6 1.65.     | 2 0      | 2    |
|                                  | RBB 194       | 26           | 12          | 18        | 55        | RBH 124       | 36          | , ,        | 7                | י ה<br>ס   | RBH 230       | RBN 295       | 15           | ~         | σ         | 48            | RBH 25        | 18         | σ          | 54         | m                 | ~           | -          |           |             | 4         |            | RBB 179       | t        |      |
| YPE.                             | 1 LEFT FEAUR  | 1 LEFT FEMUR |             |           | 9N0 1     | 5 HILAN NODE  | 1 FET FERID |            |                  | 1 LIVE     | S HILAR NOJE  | O N. MUCOSA   | 1 LEFT FEMUR | 2 KIDNEY  |           | 9101 4        | 5 HILAR NODE  | •          |            | ئ          | ď                 | 9 P. MUCOSA | LEFT FEHUR |           |             |           |            |               |          |      |
| 1 <del>2</del> 2                 | 3129 -        | 1            |             | :         | •         | :             | 3166 -      |            |                  |            | •             | 01- 951E 250  | 3147 -       | :         | :         | :             | :             | :          | :          | :          | •                 | •           | 3146 - 1   | :         | :           | :         |            | :             | -        | •    |

. NEW DATA THIS REPORT

TABLE E.8 ESTIMATED ACTIVITY EXPENDITURE OF PROJECT 2.6c "A" SAMPLES IN PARTICLE ANALYSIS Doubletrack Clean Slate 1 Event 2,45E 03 - 3,17E 03 1,09E 02 - 2,29E 02 3. 93E 02 - 6. 21E 02 3.89E 02- 1.26E 03 2. 74E 02 -2. 16E 03 2, 18E 02 1,43± 0,03E 01 0,00E 00 1.39 ± 0.15E 00 Activity (DPM) Pu-239, 240 7.88E 01 2. 72E 02 1.28E 03 0, 00E 00 5.57E 01 O. 00E 00 2.01E 01 2. 28E 02 1.74E 02 4. 90E 02 8.91E 01 4.05E 02 6.16E 02 0.000.0 2. 50E 01 \* 34 Analysis No. CCD-2160 CAD-2164 CCD-2170 CCD-2165 CTA-2173 CAD-2162 -2168 -2175 CCD-2169 CCD-2172 CCD-2163 CCD-2180 CTA -2171 2161 CTA-2174 CAD-2166 CCD-2177 CCD-2157 CTA-2178 2179 CCD-2181 CTA-2176 -2167 CTA-2158 TLW Collection No. 3013A 3038A 2922A 9699A 9661A 9656A 9691A 9668A 2946A 2934A 2907A 2526A 2920A 9624A 9698A 9660A 2723A **96694** 2812A 2837A 2443A 2151A 3466A 2482A 3449A L25, P9 (2) L29, P9(2) L19, P9 (2) L8, P21(2) L7, P9(11) L6, P13 L18, P21 LS, P17 058(1) 068 058(2) Location 890 058 058 058 190 090 650 058 190 190 054 082 B 8a1 ARC Bal 881 ひとませいけいます

(1) Data determined by precision counting. Values without an error assignment determined by 2 Tr counting. (2) A range value indicates an unknown fraction of the sample has been removed.

TABLE E.8 (CONTINUED)

| ARC        | Location  | 71.W           | TI.W         | Pu-239, 240        |                 |
|------------|-----------|----------------|--------------|--------------------|-----------------|
|            |           | Collection No. | Analysis No. | Activity (DPM)     | Lvent           |
| Na<br>Na   | 01        | 4082A          | CTA-2194     | 5, 91501           | Clean Slate II  |
| 18         | P2(2)     | 2305A          | CCD-2184     | 3.475 01 - 2.44502 | •               |
| <          | 036(1)    | 4116A          | CTA-2195     | 5.53 ± 0, 19E 01   | •               |
| <          | 054(1)    | 2286A          | CCD-2183     | 5.41 + 0. 19501    | •               |
| . 62       | 044(1)    | 2371A          | -2189        | 4.47 ± 0.21E 00    | 1               |
| <b>6</b>   | 054(1)    | 4812A          | CTA-2197     | 1.26 + 0.06E 01    | •               |
| <b>•</b>   | 060(1)    | 2370A          | CCD-2188     | 8.71 ± 0.30E 00    | •               |
| •          | (1)890    | 2369A          | -2187        | 6, 00 ± 0, 195 01  | •               |
| Ω          | 030       | 41634          | CIA-2196     | 00 300 0           |                 |
| ۵          | 034       | 3182A          | CAD-2190     | 0.000.00           | •               |
| Bal        | L1, P17   | 4022A          | CTA-2192     | 0, 00% 00          | •               |
| Bel        | L3, P9(1) | 2312A          | CCD-2185     | 5.67 ± 0, 12E 01   | •               |
| Bal        | 1.4, P21  | 4024A          | CTA-2193     | 0° 00E 00          | •               |
| Bal        | L7, P9    | 4011A          | -2191        | 00 300 0           | •               |
| 8 8a?      | L1, P1    | 2366A          | CCD-2186     | 6.29 ± 0.34E 00    | •               |
| Mob        | DP-12     | 2272A          | CCD-2182     | 7.21 ± 0.36E 00    | •               |
| BX         | 90        | 4987A          | CAD-2201     | 0.000.00           | Clean Slate III |
| ×          | 10        | 5184A          | CTA-2203     | 0.0000             | •               |
| BM         | (1)01     | 4973A          | CCD-2199     | 1. 26 ± 0. 03E 00  | •               |
| <          | 030       | 4974A          | CAD- 2200    | 0.00E 00           | •               |
| : <b>«</b> | 102(1)    | 4964A          | -2198        | 3.45 ± 0.13E 01    | *               |
| <          | 108       | \$162A         | CTA-2202     | 0.000              |                 |

TABLE E.9 PLUTONIUM AND URANIUM ANALYBES OF ROLLER COASTER DISTILLED WATER SAMPLES (1)

|                                    |                      |                      | \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | *************************************** |                 |
|------------------------------------|----------------------|----------------------|------------------------------------------|-----------------------------------------|-----------------|
| R. C. Sample No.                   | K-030-3133           | K-030-3134           | L-018-3128                               | 1-030-3129                              | 1-642-3127      |
|                                    |                      | 0. 700               | 0.825                                    |                                         | 0, 750          |
| Sample pH                          | 5.1                  | 5.3                  |                                          | 5.3                                     | 5.0             |
| Centrif. Supernate                 | 1.34x107             | 2.80x10°             | 0.00                                     | 4.83x10 <sup>3</sup>                    | 4.50×101        |
| Leach Operation (2)                | •                    | •                    |                                          | •                                       |                 |
| Millipore Filtrate                 | 1.17 ± 0.02×194      | 1.99 ± 0.04x103      |                                          | $4.45 \pm 0.14 \times 10^{3}$           |                 |
| 173 min. Leach Fill.               | 2. 76×104            | 6.72x103             |                                          | 5.05x104                                |                 |
| 400 min. Leach Fil.                | 5.70×10 <sup>3</sup> | 3.92x103             |                                          | 1.88×104                                |                 |
| 968 min. Leach Fill.               | 5.70×10 <sup>3</sup> | 3.08×10 <sup>3</sup> |                                          | 1.49×104                                |                 |
| 1273 min. Leach Fil.               | 1.20x10 <sup>3</sup> | 1.12×103             |                                          | 7, 26×10 <sup>3</sup>                   |                 |
| 2896 min. Leach Fill.              | 5.40×10 <sup>3</sup> | 2.24x10 <sup>3</sup> |                                          | 2, 15×104                               |                 |
| Extraction (3)                     | 2.8 ± 0.06x104       | 7.87 ± 0.15x103      |                                          | 4.03 + 0.10x104                         |                 |
| Water plus Crud                    |                      |                      | $1.05 \pm 0.04 \times 10^{2}$            |                                         | 6.98 ± 0.42x102 |
| Bottle Wash(4)                     |                      |                      | 9.43 ± 0.94x100                          |                                         | 2.35 ± 0.05x101 |
| Uranium (Mill. Filtrate) (5) 0.593 | 5) 0, 593            | 9.07                 |                                          | 1.40                                    | 0.79\$          |
| Uranium (Bot. Leach)(5)            |                      |                      | 0.965                                    |                                         | 1.04            |
| Uranium (Water + Crud)(5)          | <b>?</b>             |                      | 1.08                                     |                                         | 1.30            |
| •                                  |                      |                      |                                          |                                         |                 |
|                                    |                      | i                    |                                          |                                         |                 |

(1) All Pu values are given as dpm/tot, sample vol. Values without an error assignment are stippled samples.

Separate aliquot auccessively leached with 0.1N HCl volumes of 25 ml with intermittent attrring, and filtering. (2)

<sup>(3)</sup> Extraction performed on separate aliquot at listed sample pH.

<sup>(4)</sup> Bottles washed with hot HNO3-HCI and IN HNO3-HF.

All uranium values are given as ug U/total sample volume.

TABLE E.10 PLUTONIUM AND URANTIM ANALYSES OF ROLLER COASTER DISTILLED WATER SAMPLES (1) CLEAN BLATE II

|                                   |                               |                               | • • • • • • • • • • • • • • • • • • • • | , , , , , , , , , , , , , , , , , , , | •                           |
|-----------------------------------|-------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|-----------------------------|
| R.C. Sample No. D-0               | D-010-4175                    | D-018-4176                    | D-026-4177                              | D-034-4178                            | D-042-4179                  |
| Sample Vol. (Lit.)                | 0.225                         | 0.450                         | 0.450                                   | 0.250                                 | 0.450                       |
| Sample pH                         | 5,3                           | 5.3                           |                                         | 5.3                                   | ,                           |
| Centrif. Supernate                | 1.55×10 <sup>3</sup>          | 7.47×10 <sup>3</sup>          | 1.02×104                                | 4.43×104***                           | 2.97×10 <sup>3</sup>        |
| Total Sample Act (2)              | •                             | 9.28×105                      | 1.32×10 <sup>6</sup>                    | 5.52×10 <sup>5</sup>                  | 2.97×10 <sup>5</sup>        |
| Millipore Filtrate                | $3.58 \pm 0.09 \times 10^{2}$ | 60                            | $8.29 \pm .21 \times 10^3$              | 3.94 ± 0.12×104                       | 2.93 * . lix10 <sup>3</sup> |
| % of Tot. Samp.                   |                               |                               | 0.07                                    | 7,14                                  | 66.0                        |
| 173 min. Leach Fil.               | 1. 7.36×10 <sup>3</sup>       |                               | 1.30×10 <sup>5</sup>                    | 2.93×104                              | 5. 36×107                   |
| % of Tot. Samp.                   | Act.                          |                               | 9.85                                    | 5,31                                  | . B. D                      |
| 400 min. Leach Fi                 | 1. 1.64×10 <sup>3</sup>       |                               | 5.18×10 <sup>4</sup>                    | 9.10×10 <sup>3</sup>                  | 1.73×107                    |
| % of Tot. Samp. Act.              | Act.                          |                               | 3.93                                    | 1,65                                  |                             |
| 968 min. Leach Fil.               | 1. 1.10×10 <sup>3</sup>       |                               | 6.90×104                                | 1.07×104                              | 1.44×10*                    |
| % of Tot. Samp. Act.              | ť                             |                               | 5. 25                                   | 1.94                                  | 4,85                        |
| -                                 | 711. 5.94×10 <sup>2</sup>     |                               | 2.94×104                                | 5.4x10 <sup>3</sup>                   | 7.45×10³,                   |
| g % of Tot. Samp. Act.            | Act.                          |                               | 2, 23                                   | 0.98                                  | 2.51                        |
| 77                                | Fil. 1.12×10 <sup>3</sup>     | 5.45×104                      | 9.33×104                                | 2. l×104                              | 1.63x104                    |
| % of 'fot. Samp. Act.             | Act.                          | 5.87                          | 7.07                                    | 3.87                                  | 5.49                        |
| Millipore Filter                  |                               | $5.29 \pm 0.14 \times 10^{5}$ | 9.38 ± C.25x105                         | $4.38 \pm 0.13 \times 10^{5}$         | 1.86 ± 0.05x10 <sup>3</sup> |
| % of Tot. Samp. Act.              | Act.                          |                               | 11.11                                   |                                       |                             |
| Extraction (3)                    | $7.47 \pm 0.17 \times 10^3$   |                               | $6.34 \pm 0.35 \times 10^{5}$           |                                       | 1.84 ± 0.04x105             |
| % of Tot. Samp. Act.              | :                             | 56.7                          | 49.0                                    | 29.8                                  |                             |
| Uranium (Mill. Filtrato) (4) 0. 5 | 1te) <sup>(4)</sup> 0.549     |                               | 43.7                                    | 112.                                  | 68.8                        |
| Uranium (Mill. Filter) (4)        | (+)                           | 396.                          | 890                                     | 137. 2                                | 219.                        |
| Uranium (Ext. Aliq.)(4)           | €                             |                               |                                         | 27.4                                  |                             |
|                                   |                               |                               |                                         |                                       |                             |

(1) All Pu values are given as dpm/tot, sample vol. Values (other than tot, sample act.) without an error assignment Separate aliquot successively leached with 0, IN HCl volumes of 25 mi with intermittent stirring, and filtering. Tot. sample act. is sum of millipore filtrate and filter, and all leaches. are stippled samples. (2)

(3) Extraction performed on separate aliquot at listed sample pH.

(4) All uranium values are given as µg U/total sample volume.

TABLE E.11 PLUTONIUM AND URANIUM ANALYSES OF ROLLER COASTER DISTILLED WATER SAMPLES(1), CLEAN SLATE III

ز

| R. C. Sample No.                   | A-012-5249                       | A-036-5248                    | A-060-5252                            | A-084-5251                    | A-108-5250           |
|------------------------------------|----------------------------------|-------------------------------|---------------------------------------|-------------------------------|----------------------|
| Sample Vol. (Lit.)                 |                                  | 0.200                         | 0.300                                 | 0.400                         | 0.300                |
| Sample pH                          | 5.9                              | 5.6                           | 5.3                                   | 5,3                           | 5.3                  |
| Centrif. Supernate                 | 5.04×10 <sup>3</sup>             | 4.2×101                       | $5,49\times10^{2}$                    | 1.78×10 <sup>3</sup>          | 1.91×10 <sup>3</sup> |
| Tot. Sample Act. (2)               | 2.24×10 <sup>6</sup>             |                               | •                                     |                               | ***                  |
| Millipore Filtrate                 | $8.87 \pm 0.28 \times 10^{3}$    | $4.46 \pm 0.19 \times 10^{4}$ | $6.30 \pm 0.02 \times 10^{2}$         | $1.41 \pm 0.05 \times 10^{3}$ | 1.51 ± 0.05×10       |
| % of Tot. Samp. Act.               | 0,40                             |                               |                                       | 7                             |                      |
| 173 min. Leach Fil.                | 1.29×10°                         | 6.56×10 <sup>3</sup>          | 4. 44×10°                             | 1.68×10*                      | 1.10×10              |
| % of Tot. Samp. Act.               | 5,16                             |                               | • • • • • • • • • • • • • • • • • • • | <b>1</b>                      | *                    |
| 400 min. Leach Fil.                | 5.02×10 <sup>±</sup>             | 2.88×10 <sup>3</sup>          | 1.56×10°                              | 6.72×10°                      | 3.96×10 <sup>3</sup> |
| % of Tot. Samp. Act.               | 2,24                             | ,                             | •                                     |                               |                      |
| 968 min. Leach Fil.                | 5.52×104                         | 2.24×10 <sup>3</sup>          | 7. 20×10 <sup>2</sup>                 | 5.92×10 <sup>2</sup>          | 2.76×10³             |
| s & of Tot. Samp. Act.             | 2,46                             |                               |                                       | 1                             |                      |
| 7 1273 min. Leach Fil.             | 3.87×164                         | 1.28×10 <sup>3</sup>          | 7.20×10 <sup>c</sup>                  | 2.72×10°                      | 1.68x10              |
| % of Tot. Samp. Act.               | 1,73                             | •                             |                                       |                               |                      |
| 2896 min. Leach Fil.               | 1.08×10 <sup>5</sup>             | 3.68×10 <sup>3</sup>          | 2.28×10°                              | 7.04x10°                      | 3.72×10³             |
| % of Tot. Samp. Act.               | 4.82                             |                               |                                       |                               |                      |
| Millipore Filter                   | $1.85 \pm 0.05 \times 10^{6}$    |                               |                                       |                               |                      |
| % of Tot. Samp. Act.               | 82.6                             |                               |                                       |                               |                      |
| Extraction(3) % of Tot. Samp. Act. | $1.47 \pm 0.04 \times 10^6$ 65.6 | $7.66 \pm 0.19 \times 10^4$   | 3.89 ± 0.11×104                       | 8.37 ± 0.20x104               | 4.98 ± 0.12×104      |
| 7)                                 |                                  |                               |                                       | •                             |                      |
| Uranium (Mill. Filtrate) '718.     |                                  | 10.6                          | 11.2                                  | 15.4                          | 10.5                 |
| Uranium (Mill. Filter)(1)          | 645.                             |                               |                                       |                               |                      |

<sup>(1),</sup> All Pu values are given as dpm/tot. sample vol. Values (other than tot. sample act.) without an error assignment

Separate aliquot successively leached with 0. IN HCl volumes of 25 ml with intermittent attring, and filtering. 10t. sample act. is sum of millipore filtrate and filter, and all leaches. (2)

<sup>(3)</sup> Extraction performed on separate aliquot at listed sample pH.

All uranium values and given as ug U/total sample volume.

| _             |
|---------------|
| (CED)         |
| 25            |
| (CONTINU      |
| 8             |
| $\overline{}$ |
|               |
|               |
| CABLE E.11 (  |

| R. C. Sample No.                         | ple No.                                                                           | H-006-5219                                                 | H-030-5221                                   | H-054-5224                   | H-078-5225                                                  | H-102-5227                    |
|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------------------------------|-------------------------------|
| Sample Vol. (Lit.)                       | ol. (L1t.)                                                                        | 0.525                                                      | 0.500                                        | 0.725                        | 0.500                                                       | 0.700                         |
| Sample pH                                | <b>bys</b>                                                                        |                                                            | 5.3                                          | 5.3                          |                                                             | <b>)</b>                      |
| Centrif. Supernate<br>Leach Operation (2 | Centrif. Supernate<br>Leach Operation (2)                                         | <1.0x10 <sup>0</sup>                                       | 8.40×10 <sup>2</sup>                         | 1.96×10 <sup>2</sup>         | <1.0×10 <sup>0</sup>                                        | <1.0×100                      |
| Millipore 173 min                        | Millipore Filtrate<br>173 min. Leach Fil.                                         |                                                            | $7.22 \pm 0.29 \times 10^2$                  | 2. $12 \pm 0.13 \times 10^2$ |                                                             |                               |
| 400 min                                  | 400 min. Leach Fil.                                                               |                                                            | 1.92×104                                     |                              |                                                             |                               |
| 968 min                                  | 968 min, Leach Fil.                                                               |                                                            | 1.32×104                                     | 1.52×10 <sup>2</sup>         |                                                             |                               |
| 2896 min                                 | 14/3 min. Leach Fil.<br>2896 min. Leach Fil.                                      |                                                            | 6.60×10 <sup>3</sup><br>1.42×10 <sup>4</sup> | 1.52×10 <sup>2</sup>         |                                                             |                               |
| Extraction(3)                            | (3)                                                                               |                                                            | $6.14 \pm 0.12 \times 10^4$                  | 4. 18×10 <sup>3</sup>        |                                                             |                               |
| Water plus Crud<br>Bottle Wash (4)       | Crud<br>1h (4)                                                                    | $1.93 \pm .09 \times 10^{2}$ $1.04 \pm 0.04 \times 10^{1}$ |                                              |                              | $1.96 \pm 0.13 \times 10^{3}$ 3.31 $\pm 0.07 \times 10^{1}$ | 3 7.19 ± 0.30×10 <sup>1</sup> |
| Uranium (                                | Uranium (Mill. Filtrate) (5)                                                      |                                                            | Not Detectable                               | Not Detectable               |                                                             |                               |
| Grenium ()<br>Grenium ()                 | Uranium (Bot. Leach) <sup>(3)</sup><br>Uranium (Water plus Grud) <sup>(5)</sup> 2 | 0.175<br>(5) <sub>2.44</sub>                               |                                              |                              | 0.190<br>3.24                                               | 0.745                         |

(1) All Pu values are given as dpm/tot, sample vol. Values without an error assignment are stippled samples.

Separate aliquot successively leached with 0. IN HCI volumes of 25 ml with intermittent stirring, and filtering. (3)

Extraction performed on separate aliquot at listed sample pH.

Bottles washed with hot HNO3-HCI and 1M HNO3-HF,

All uranium values are given as ug U/total sample volume. **E E** 

|         |                   |                    | 1                             | •                                          | •       |
|---------|-------------------|--------------------|-------------------------------|--------------------------------------------|---------|
| Aliquot | Method            | po                 | Total Tracer<br>Act. (dpm/ml) | Ave. Tracer Std. Dev.<br>Act. (dpm/ml) o'i | 584. De |
|         |                   |                    | Pu-236                        | Pu-236                                     |         |
| ~       | Isotapic Dilution | Dilution           | 25.57                         |                                            |         |
| ~       | =                 | =                  | 26.04                         |                                            |         |
| €       | =                 | =                  | 26.02                         |                                            |         |
| •       | ÷                 | =                  | 25.38                         |                                            |         |
| 10      | <b>a</b>          | =                  | 25.41                         |                                            |         |
| ص       | =                 | =                  | 25.72                         |                                            |         |
| •       | 2                 | =                  | 26.13                         |                                            |         |
| geò.    | 5                 | =                  | 25.75                         |                                            |         |
| 6       | =                 | =                  | 25.62                         |                                            |         |
|         |                   |                    |                               | 25.74                                      | + 1.0%  |
| 10      | Exhaustiv         | Exhaustive Plating | 24.92                         |                                            | ı       |
| 11      | =                 | =                  | 24.60                         |                                            |         |
| 12      | =                 | =                  | 25.37                         |                                            |         |
| 13      | =                 | =                  | 25.32                         |                                            |         |
|         |                   |                    | (Ave 13 Plates)               | 25.05                                      | 1.5%    |
|         |                   |                    | 25.48 + 1.8%                  |                                            |         |
|         |                   |                    | 1.026% diff.                  |                                            |         |

хп-1

257

| INDLE E 13 | 13 RAE      | RADIOCHEMI     | CAL | VNALYSIS               | OF ROLLER | COASTER                  | BIOLOGI     | CAL ANALYSIS OF ROLLER COASTER BIOLOGICAL QUALITY CONTROL SAMPLES                                                                                                                                                                                                                                                                                                                                   | TOULS                                  | AMPLE          |             |
|------------|-------------|----------------|-----|------------------------|-----------|--------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|-------------|
| APC LO     | 00 11 10 NO | COLLECTION NO. | _   | TLW<br>ANALYSES<br>NO. | EVENT     | TYPE                     | 41.<br>(22) | PU-239, 240<br>ACTIVITY<br>[CPM]                                                                                                                                                                                                                                                                                                                                                                    | Y 1 EL D<br>(R=RE<br>WORK)             | COUNT<br>T 1KE | R EM ARK \$ |
| NON E      |             |                |     | 22                     | BLK/SPIKE | TISSUE<br>BCNE<br>FISSUE |             | 1.05±0.03E 03<br>1.75±0.03E 03<br>1.32±0.05E 03<br>5.05±0.05E 03<br>5.05±0.05E 03<br>1.70±0.05E 03<br>1.70±0.05E 03<br>1.70±0.05E 03<br>2.31±0.05E 03<br>5.75±0.05E 02<br>6.25±0.05E 02<br>6.35±0.05E 02<br>6.35±0.05E 02<br>6.35±0.05E 03<br>7.70±0.05E 02<br>8.75±0.05E 02<br>8.35±0.05E 03<br>8.75±0.05E 03<br>8.75±0.05E 03<br>8.75±0.05E 03<br>8.75±0.05E 03<br>8.75±0.05E 03<br>8.75±0.05E 03 | 00000000000000000000000000000000000000 |                |             |

258

| TABL | TABLE E.13 (CONTINUED) | (CONT    | INUED)                                  |                                                         |               |          | 1           |                                                 |                           |                                                                              |  |
|------|------------------------|----------|-----------------------------------------|---------------------------------------------------------|---------------|----------|-------------|-------------------------------------------------|---------------------------|------------------------------------------------------------------------------|--|
| ARC  | רטכענ                  | 00<br>00 | LOCATION RUC<br>COLLECTION A<br>NO.     | TLW<br>IN ANALYSIS<br>NO.                               | EVENT         | TYPE     | HT.<br>(02) | PU-239, 240<br>ACTIVITY<br>(DPH)                | Y IEL C<br>(R=RE<br>WORK) | VIELE COUNT<br>(R=RE TIPE<br>WORK)                                           |  |
| NONE |                        |          |                                         | RQC-29<br>30<br>31                                      | BLK / SP I KE | 1155LE   |             | 3.54#0.08E 02<br>2.60#0.08E 02<br>3.76#0.09E 03 |                           | 200<br>200<br>200<br>200<br>200                                              |  |
|      |                        |          | 32-C<br>33-C                            | M M M                                                   |               |          |             | 1.15+0.02E 03<br>3.07+0.07E 03<br>4.55+0.10E 02 |                           | 223                                                                          |  |
|      |                        |          | 36-0                                    | ' SS - 40 Pr<br>PS - PS - |               | BONE     |             | 1.86+0.04E 03<br>1.25+0.03E 03                  |                           | \$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00 |  |
|      |                        |          | 9 B B B C C C C C C C C C C C C C C C C |                                                         |               | 11 S¢ LE | , o o d     | 2.9140.06E G3<br>8.0540.18E 02<br>3.7240.08E 03 | 76-1<br>82-5<br>63-6      | 222                                                                          |  |
|      |                        |          | 41-0<br>43-0                            | 444<br>M CV W                                           |               | BCNE     |             | 4.44+0.18C 00<br>1.32+0.41E 00<br>1.23+0.11E 00 | 68.6<br>72.6<br>44.4      | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200           |  |

| OPS-1  Lab Blank Urine  1  1  1  1  1  1  1  1  1  1  1  1  1                                                                                                                                   | T L W<br>Analysis | Sample<br>Event                       | Sample<br>Type | Pu-239, 240 Activity Idom | Yield<br>R=Rework | Count    | Re                 | Remarks  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|----------------|---------------------------|-------------------|----------|--------------------|----------|
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                           | - 10kr            | · · · · · · · · · · · · · · · · · · · | 11-12-         | 1.76 ± 0.24               | 44.3              | 200      | Chemist Urine      |          |
| 25<br>11<br>10<br>11<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>19<br>11<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18          | 1-640             | A DIAIR                               | )<br>          | 1 08 + 0 32               | 14.1              | 200      | =                  | •        |
| 25<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>19<br>19<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                    | 7                 | : :                                   | =              | 10.0010                   | 14.0              | 000      | 2                  | :        |
| 55<br>6<br>7<br>7<br>10<br>11<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>18<br>19<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | m ·               | : :                                   | =              | 3 74 + 1 16               | . 7               | 200      | •                  | :        |
| 25<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>19<br>11<br>19<br>11<br>19<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                      | ₩,                | : =                                   | =              | 01:11 F1:3                | . 4               | 200      | =                  | :        |
| 22 22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                           | n 4               | =                                     | =              | 50.0 ± 50.0               | 36. 6 R           | 250      | :                  | =        |
| 11<br>10<br>11<br>12<br>13<br>14<br>16<br>19<br>19<br>19<br>11<br>19<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                            | ۰ د               | =                                     | :              | 0 63 40 40                | 10.7              | 200      | =                  | =        |
| 9<br>10<br>11<br>12<br>13<br>14<br>16<br>19<br>19<br>19<br>11<br>19<br>11<br>19<br>11<br>11<br>11<br>11<br>11<br>11                                                                             | ~ 4               | =                                     | =              | 0.53 ± 0.26               | 21.4              | 200      | =                  | =        |
| 11<br>12<br>13<br>14<br>16<br>16<br>19<br>19<br>19<br>11<br>19<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                  | <b>D</b> (        | =                                     | =              | 0.20 ± 0.20               | 35.6              | 121      | =                  | =        |
| 111<br>112<br>113<br>114<br>115<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119                                                                                                  | <b>~</b> •        | =                                     | =              | 0.16 ± 0.16               | 43, 5             | 121      | =                  | t        |
| 112<br>113<br>114<br>115<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119                                                                                                         | <u>-</u>          | 68 68                                 | =              | 0.00 × 0.09               | 30.0              | 200      | =                  | :        |
| 13<br>14<br>15<br>16<br>19<br>20<br>22<br>22<br>31m. Blank                                                                                                                                      | 7 -               | =                                     | =              | $0.00 \pm 0.20$           | 14.5              | 200      | =                  | 2        |
| 115<br>116<br>119<br>120<br>120<br>130<br>14 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                              | - C               | =                                     | =              | 0.16 ± 0.16               | 27,3              | 200      |                    | =        |
| 15<br>16<br>19<br>20<br>22<br>22<br>36m. Blank                                                                                                                                                  | 7                 | 2                                     | =              | $0.07 \pm 0.09$           | 51.4 R            | 300      | =                  | =        |
| 16<br>19<br>20<br>22<br>31m. Blank<br>11 11 11 11 11 11 11                                                                                                                                      | P 4               | :                                     | =              | 0.19 ± 0.19               | 22.2              | 200      | =                  | =        |
| 19<br>20<br>22<br>31m : : : : : : : : : : : : : : : : : : :                                                                                                                                     | n 4               | =                                     | =              | 0.00 ± 0.02               | 62.0              | 200      | =                  | :        |
| 22                                                                                                                                                                                              | 9 6               | :                                     | z              | 0.06 ± 0.06               | 39,3              | 900      | :                  | :        |
| 22                                                                                                                                                                                              | 9 0               | =                                     | =              | $0.22 \pm 0.22$           | 47.4              | 250      | =                  | =        |
| 22 H H H H H H H H H H H H H H H H H H                                                                                                                                                          |                   | =                                     | =              | 0, 10 ± 0, 06             | 45.0              | 400      | =                  | =        |
| Sim. Blank                                                                                                                                                                                      | 2 6               | =                                     | =              | 0.08 ± 0.10               | 50.1              | 220      | 2                  | <b>2</b> |
|                                                                                                                                                                                                 |                   |                                       |                | 0.004 µg U**              | 65.0              | Fluor.   | **Conc/0. 2 1h     | sample   |
|                                                                                                                                                                                                 | ۲,                |                                       |                | 6.005                     | 68.0              | <b>:</b> |                    | : :      |
|                                                                                                                                                                                                 | ) ee              | =                                     | =              | 0.003                     | :                 | 2        | =                  | =        |
| = = =                                                                                                                                                                                           | ) <del>-</del>    | z                                     | =              | 0.005                     | 69.0              | =        | : :<br>m<br>0<br>: | 2 :      |
| 2 Z                                                                                                                                                                                             | -                 | =                                     | Hamburger      | 0.019 "                   | ;                 | =        | : :<br>:           | =        |
|                                                                                                                                                                                                 | 7-5               | =                                     |                | 0.010                     | 66.5              | =        |                    | : 1      |
| 7-27                                                                                                                                                                                            |                   | 2                                     | :              | 0,005                     | ;                 | =        | . 0.5              | =        |
| E. 4                                                                                                                                                                                            | H-4               | =                                     | =              | 0.016 "                   | 48.4              | z        | :<br>:             | =        |

| TABL | E E.15          | RADI         | <b>OCHEMICAL</b>         | ANALYSIS O             | F ROLLER | COASTER | PLYSICA      | TABLE E.15 RADIOCHEMICAL ANALYSIS OF ROLLER COASTER PLYSICAL QUALITY CONTROL SAMPLES | ROL SAN                  | IPLES       |           |
|------|-----------------|--------------|--------------------------|------------------------|----------|---------|--------------|--------------------------------------------------------------------------------------|--------------------------|-------------|-----------|
| ARC  | L D C A T 10 V  | 201          | TLW<br>COLLECTION<br>NO. | TLW<br>ANALYSIS<br>NO. | EVENT    | TYPE    | HT.<br>(G/S) | PU-239, 240<br>ACTIVITY<br>(DPM)                                                     | Y 16LO<br>(R=RE<br>YORK) | COUNT       | A EMARK S |
| 25.  | BA-65-A<br>05-B | A-G          | NONE COC-                | 1091                   | SPIKE    | SOIL_   | 1            | 1. 26+0.03E 05<br>1. 59+0.05E 05                                                     |                          | 202         | TD        |
|      | 88-09<br>86-03  | O- M         |                          | 1098                   |          |         | e.83         | ŀ                                                                                    |                          |             |           |
|      | 80-0            | . ~          |                          | 1089                   |          |         |              |                                                                                      |                          |             |           |
|      | 85-04<br>86-04  | <b>4</b> ) 4 |                          | 1100                   |          |         |              |                                                                                      |                          |             |           |
|      | 811-10-4        | <b>∀</b> -0  |                          | 1093                   |          |         | 5.9%         | 6.06#1.58E 00                                                                        | 43.8                     | 6           | 10        |
|      |                 | P            |                          | 1103                   |          |         | 5.94         | 0                                                                                    | 64.7                     | 60          | 10        |
|      | 61-07           |              |                          | 9601                   |          |         |              |                                                                                      |                          |             |           |
|      | 8K -08          | €            |                          | 1601                   |          |         |              |                                                                                      |                          |             |           |
|      | 8L-01           | <b>~</b>     |                          | 1095                   |          |         |              |                                                                                      |                          |             |           |
|      | 8H-0            | <b>~</b>     |                          | 1099                   |          |         |              | 1                                                                                    | ,                        | ;           |           |
|      | 80-08-          | 5-A          |                          | 1092                   |          |         | 10.47        | 2.39t0.07E 02                                                                        | 63.5                     | ,<br>,      | <u>ာ</u>  |
|      |                 | 9            |                          | 1102                   |          |         | 10.41        | 0                                                                                    | <b>1.09</b>              | 9<br>9<br>9 | 10        |
|      | CM-09-A         | ¥-6          | 8164                     | 1104                   | C S 1 I  |         | 50.03        | 0                                                                                    | 35.0                     | C?          | PC        |
|      |                 | -42          |                          | 1112                   |          |         | 50.03        | 0                                                                                    | 14.9                     | S,          | A 10      |
|      | 50-K)           | 8-6          |                          | 1105                   |          |         | 50.03        | Ò                                                                                    | 31.9                     | Ç,          | PCE       |
|      | CM-09-82        | 9-82         |                          | 1113                   | -        |         | 50.02        | 1.16#0.05£ 03                                                                        | 48.3                     | 20          | R 10      |
|      | Bn-0]           | 1 - A        | 8188                     | 1108                   | C \$111  |         | 50.05        | 0                                                                                    | 14.2                     | 9           | PCE       |
|      |                 | -42          |                          | 1116                   |          |         | 50.05        | 1.0340.036 05                                                                        | 37.8                     | 0.7         | ر<br>0    |
|      |                 | ပု           |                          | 1110                   |          |         | CA50         |                                                                                      | 90                       | Q           | PCE       |
|      |                 | <b>~</b> 2   |                          | 1118                   |          |         | CA50         |                                                                                      | 54.3                     | 0,          | م<br>5    |
|      |                 | P            |                          | 1109                   |          |         | ó            | 0                                                                                    | -                        | 9           | PcT       |
|      |                 | -82          |                          | 1117                   |          |         | 50.04        |                                                                                      | 35.7                     | S           | 5<br>5    |
|      | 221-A           | •            | NONE                     | 221-A                  | QUAL.    | sor.    |              |                                                                                      | 80.5                     | 1000        | DP3/34    |
|      | <b>6</b> 2      | <b>6</b> C   |                          | P                      |          |         |              | .00 + 1 .00 E-0                                                                      | 67.5                     | 1000        | 1×/ Kd0   |
|      | 513-A           | •            |                          | \$13-A                 |          |         |              |                                                                                      | 53.5                     | 1000        | 1k/ Kd0   |
|      | 7               | •            |                          | <b>•</b>               |          |         |              | -300.                                                                                | 4-14                     | 1000        | DP:4/ML   |
|      | CA-29-A         | A-0          |                          | CA-99-A                |          |         |              | 2.3010.04E 01                                                                        | 9.29                     | 1000        | DP3/4L    |

•

TO \* FOTAL DISSOLUTION
PD \* PARTIAL DISSOLUTION
RIO \* RESIDUE - TOTAL DISSOLUTION
PRE \* PARTIAL DISSOLUTION AND EXTRACTION

| (CONTENUED) | ****************** | ION TLY      |
|-------------|--------------------|--------------|
| TABLE E.16  |                    | ARC LOCATION |

| G2 CA-99-B QUAL. SOL. 2.26#0.04E 0  CB-42-A CB-42-A S.0. S.0. S.0. S.0. S.0. S.0. S.0. S.0                                                           | ARC LOCATION TLW COLLECT NO. | LOCATION TLW<br>COLLECTION<br>NO. | TLW<br>OLLECTIC<br>NO. | TLW<br>DV ANALYSIS<br>ND.               | EVENT  | TYPE  | ¥1. | PU-239,240<br>ACTIVITY<br>(DPH) | YIELD<br>(R:RE<br>WORK) | YIELD COUNT<br>(R*RE TIME<br>WORK) | REHARKS |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|------------------------|-----------------------------------------|--------|-------|-----|---------------------------------|-------------------------|------------------------------------|---------|
| CB-42-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-11-A<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8 |                              | A-90-47                           | A VON                  | COC-CA-99-B                             | OUAL.  | \$01. |     | 2.26#0.04E 01                   | 90.6                    | 1000                               | DPM/ML  |
| -11-A<br>-11-A<br>-13-A<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-19-A<br>-8<br>-733-A<br>-8                                                           |                              | CR-42-4                           | )                      | C8-42-A                                 | ·<br>• |       |     | 5.08#0.15€ 02                   | 76.6                    | 20                                 | DPH/PL  |
| -11-A<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-219-A<br>-8<br>-733-A                                                                            |                              |                                   |                        |                                         |        |       |     | 5.01+0.15E 02                   | 73.4                    | 0.7                                | DPH/HL  |
| CC-30-A<br>CD-93-A<br>CD-93-A<br>CA-58-A<br>CA-58-A<br>219-A<br>733-A                                                                                |                              | 4-11-                             |                        | -11-                                    |        |       |     | 4.68#0.14E 02                   | 73.6                    | 90                                 | DPM/HL  |
| CC-30-A<br>-B<br>-B<br>-B<br>-B<br>-B<br>219-A<br>-B<br>733-A                                                                                        |                              |                                   | •                      | ( ec                                    |        |       |     | 4.58t0.15E 02                   | 4.19                    | 20                                 | DPIX/ML |
| CD-93-A<br>CA-58-A<br>CA-58-A<br>219-A<br>733-A                                                                                                      |                              | 4-04-07                           | •                      | A-0.F-2.2                               |        |       |     | 8.59#0.28£ 01                   | 68.3                    | O.                                 | DPH/HL  |
| -A CO-93-A<br>-B -B<br>-A CA-58-A<br>-B 219-A<br>733-A                                                                                               |                              |                                   |                        |                                         |        |       |     | 8.21#0.24E 01                   | 68.2                    | 2                                  | DPM/HL  |
| -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -                                                                                                             |                              | 4-60-00                           |                        | CD-63-4                                 |        |       |     | 4.8410.08E 03                   | 73.1                    | 20                                 | DPH/HL  |
| -A CA-58-A<br>-B 219-A<br>733-A -B                                                                                                                   |                              |                                   |                        | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |        |       |     | 4.8310.076 03                   | 77.2                    | 63                                 | DPH/ML  |
| 219-A<br>219-A<br>733-A<br>733-A                                                                                                                     |                              | - 8 S - 4 J                       |                        | CA-58-A                                 |        |       |     | 2.1740.06£ 01                   | 31.4                    | 1000                               | DPM/PL  |
| 219-A<br>-B<br>733-A                                                                                                                                 |                              |                                   |                        |                                         |        |       |     | 2.25#0.05E 01                   | 37.1                    | 1000                               | DPH/FL  |
| 733-A<br>733-A                                                                                                                                       |                              | 219-4                             |                        | 219-A                                   |        |       |     | 1.00 # 1.00 £-02                | 56.1                    | 200                                | 14/840  |
| 733-A<br>-8                                                                                                                                          |                              |                                   |                        | ; ec                                    |        |       |     | 2.00#2.00E-02                   | 33.9                    | 800                                | DP11/ML |
| 82-                                                                                                                                                  |                              | 711-4                             |                        | 733-A                                   |        |       |     | 2.0012.00E-02                   | 42.2                    | <b>2</b> 00                        | DPH/ML  |
|                                                                                                                                                      |                              | <b>1</b>                          |                        | 87                                      |        |       |     | 1.00#2.00 E-02                  | 43.3                    | 200                                | DP3479L |

TD = TOTAL CISSOLUTION
PD = PARTIAL DISSOLUTION
RTD = RESIDUE = TOTAL DISSOLUTION
PCE = PARTIAL DISSOLUTION AND EXTRACTION

د

| 1                                       | TABLE E.18 | RADIOCHEMICAL AN                      | ALYSES OF TL    | W PHYSICA   | LOUAL  | RADIOCHEMICAL ANALYSES OF TLW PHYSICAL QUALITY CONTROL SAMPLES |
|-----------------------------------------|------------|---------------------------------------|-----------------|-------------|--------|----------------------------------------------------------------|
| TLW<br>Analysis<br>No.                  | , 6,       | Sample<br>Type                        | 39, 24(<br>wity | **          | Count  | Remarks                                                        |
| DWS-1                                   | 1          | Reagents                              | # .             | 70.6        | 0001   |                                                                |
| TIS- LL-1                               | Pu-236 Std | Pu-239 Tracer                         | 20.9 ± 0.4/ml   | 71.6        | 000    | Fu-239(Mass Spec)=20.8 dpm/mi                                  |
| TLS-HL-1                                | =          |                                       | 1024 # 1 //II.1 | 65. 6       | 0      | 3COT= ::                                                       |
| =                                       | =          | :                                     | 1028 ± 29/ml    | <b>66.4</b> | 20     | m/mdp 2501=                                                    |
| CBR-1115                                | Lab Blank  | Floor Swipe                           | 41              | 72.0        | 360    | Floor in front of Hond #1                                      |
| ======================================= |            | Bench Swipe                           | <b>*</b> 0.     | 80.1        | 360    | Slight Contam. removed                                         |
| 1120                                    | =          | Floor Swipe                           | ö               | 80.4        | 300    | Floor in front of Hood #2                                      |
| 1121                                    | :          | Bench Swipe                           | <b>*</b> 0.     | 84.2        | 300    |                                                                |
| 1123                                    | =          | Virg Nev Soil                         | #               | 40.4        | 35     | Preshot CS 1 Soil Sample                                       |
| 1124                                    | =          | = = ==                                | $0.76 \pm 0.30$ | 51.0        | 300    |                                                                |
| 1125                                    | :          | 10 88 11                              | £ 0.            | 31.1        | 300    | 20 27 27                                                       |
| 1126                                    | =          |                                       | 3               | 86.3        | 360    | High Level Tracer used                                         |
| 1127                                    | :<br>:     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $0.05 \pm 0.14$ | 711.7       | 360    | =                                                              |
| 1128                                    |            | :                                     | 12 ± 0.         | 84.9        | 200    | Low " " "                                                      |
| 1129                                    | =          | =                                     | $0.11 \pm 0.11$ | 78.2        | 200    |                                                                |
| RRB-1                                   | =          | :                                     | $0,33 \pm 0,38$ | 38, 3       | 250    | ** ** **                                                       |
| 7                                       | =          | :                                     | $0.02 \pm 0.09$ | 47.0        | 250    | a                                                              |
| · (e1                                   | =          | :                                     | 0.08 ± 0.08     | 43.3        | 240    |                                                                |
| ₩                                       | =          | •                                     | $0.14 \pm 0.13$ | 58.9        | 240    | 41 68 69                                                       |
| 'n                                      | =          | 2                                     | $0.17 \pm 0.17$ | 45.0        | 150    |                                                                |
| •9                                      | =          | 2                                     | $0.0 \pm 0.13$  | 29.3        | 150    | = = =                                                          |
| 1                                       | =          | **                                    | 0.04 ± 0.16     | 29.1        | 240    | :                                                              |
| 80                                      | =          | <b>:</b>                              | $0.31 \pm 0.27$ | 60.9        | 240    | ** ** **                                                       |
| R-1                                     | =          |                                       | 0.001 HZ U**    | 90          | Fluor. | Fluor. + *Conc/Total Sample                                    |
| R-2                                     | =          | •                                     |                 | =           | =      |                                                                |
| R-3                                     | :          | 3                                     | 0,002 " "       | =           | 3      |                                                                |
| R-4                                     | =          | :                                     | 0.002 " "       | =           | =      |                                                                |
| X-5                                     | :          | :                                     | 0.001 " "       | 3           | :      |                                                                |
| R-6                                     | =          | =                                     | 0.002 " "       | =           | :      |                                                                |
| R-1                                     | =          | :                                     | 0.001 "         | =           | =      |                                                                |
| 80.≃                                    | :          | :                                     | 0.001           | =           | =      |                                                                |
| · - ≃                                   | =          | =                                     | 0.007 " "       | =           | =      |                                                                |
| R-10                                    | :          | =                                     | 0.002 " "       | :           | :      |                                                                |
| n-11                                    | =          | =                                     | 0.001 " "       | =           | =      |                                                                |
| R-12                                    | :          | =                                     | 0.007           | :           | =      |                                                                |
| <b>*</b>                                | =          | =                                     | 0.001           | :           | =      |                                                                |
|                                         | :<br>:     | 2                                     | 0.002 "         | :           | :      |                                                                |

| TABLE E.17 NUMBER OF ANALYSES OF BIOLOGICAL SAMPLES FOR PLUTONIUM AND URANIUM | ES OF BIO |    | CAL SAMPLES | Ž  | PLUTONIUM | A  | D URANIUM |            | 4 4000   |    |
|-------------------------------------------------------------------------------|-----------|----|-------------|----|-----------|----|-----------|------------|----------|----|
| SAMPLE TYPE                                                                   | ა<br>გ    |    | SHEEP       |    | BURKO     |    | NO ANIMAI | <br>       | TOTAL    |    |
|                                                                               | Pu        | n  | Pit         | Ξ  | Pu        | 3  | Pu        | ח          | Pu       | ٥  |
|                                                                               |           |    |             |    |           |    |           |            | ·        |    |
| Bone                                                                          | 31        | ~  | 35          | 9  | 30        |    |           | -11-       | 96       | 10 |
| Kidney                                                                        | 31        | 7  | 34          | 4  | 27        |    |           |            | 92       | =  |
| Liver                                                                         | 30        | 9  | 30          | 7  | 30        |    |           | -          | 06       | 2  |
| Lung                                                                          | 27        | 20 | 34          | 12 | 29        | 62 |           |            | 06       | 35 |
| Hilar Node                                                                    | 30        | ~  | 34          | 9  | 29        |    |           | 7          | 93       | 13 |
| Trachea                                                                       | 22        |    | 80          |    | 7         |    |           | -          | 37       |    |
| G.I. Tract                                                                    | 21        |    | 80          |    | 9         |    |           |            | 35       |    |
| Pharyngeal Mucosa                                                             | 21        | -  |             |    | 9         |    |           |            | 27       |    |
|                                                                               | 21        |    | <b>~</b>    |    | 7         |    |           |            | 31       |    |
| Urine                                                                         |           |    | 61          |    |           |    |           |            | 19       |    |
| Feces                                                                         |           |    | 21          |    |           |    |           | -          | 21       |    |
| R.C. Qual. Control (Tissue)                                                   |           |    |             |    |           |    | 39        |            | 39       |    |
| R.C. Qual. Control (Bor.e)                                                    |           |    |             |    |           |    | <b>~</b>  |            | •        |    |
| TLW Qual. Control (Urine Bik)                                                 |           |    |             |    |           |    | 20        |            | 50       |    |
| TLW Qual. Control (Meat Bik)                                                  |           |    |             |    |           |    | # 60      | <b>6</b> 0 | <b>6</b> | Ð  |
| Total                                                                         | 234       | 4  | 273         | 29 | 166       | m  | "         | φ          | 744      | 83 |

\* Not listed in the data tables of this report

| TABLE E.18 NUMBER ANALYSES OF PHYSICAL SAMPLES FOR PLUTONIUM AND URANIUM | S OF PH     | YSICAL  | SAMP1.            | S FOR         | PI.UTON | N AN      | 2 2 2 2     | MΩ     |          |                |             |         |
|--------------------------------------------------------------------------|-------------|---------|-------------------|---------------|---------|-----------|-------------|--------|----------|----------------|-------------|---------|
| SAMPLE TYPE                                                              | DOUBLETRACK | TRACK   | C.8.7             | _             | C.S. II | =         | C.8.11      | =      | NO EVENT | _              | TOTAL       |         |
|                                                                          | Pu          | ח       | P.                | ב             | Pu      | n         | Pu          | ם      | Pu       | +              | ٠,<br>م     | 2       |
|                                                                          |             |         |                   | •             |         | •         |             | -      |          |                |             |         |
| Casella Samples                                                          | 262         | 37      | 129               | 12            | 314     | 44        | 197         | 35     |          | ψ1<br>•        | 905         | 108     |
| Anderson Samples                                                         | 132         | 12      | 98                | <b>с</b>      | 46      | 7         | 111         | 15     |          |                | 384         | ۲.      |
| Total Air Samples                                                        | 30          | 9       | 27                | 7             | 37      | 18        | 7           |        |          |                | 801         | 31      |
| Total Air Sampler Disp.                                                  | =           | ~       | 9                 | 7             | က       |           | 32          | 7      |          |                | 25          | พ       |
| Sequential Air Samples                                                   |             |         |                   |               | 11      |           | 24          |        |          |                | 35          |         |
| Deposition Sample                                                        | 63          | -       | 55                |               | 104     |           | 137         |        |          |                | 389         | ~       |
| Water Sample                                                             |             |         | 30                | æ             | 44      | 2         | 65          | Ξ      |          |                | 139         | 32      |
| Aluminum Collector                                                       | ထ           |         | <b>~</b>          |               | 24      |           |             |        |          |                | 36          |         |
| Vegetation (Sagebrush)                                                   | 91          |         | 7                 |               | 12      |           | 13          |        |          |                | 21          |         |
| Soil Fractions                                                           | 98          | 26      | 37                | 37            | 31      | 3         | 25          | 22     |          |                | 176         | 176     |
| Balloon Wire Swipes                                                      |             |         | 16*               |               | 14*     |           | <b>*</b> 9  |        |          | -              | 36.         |         |
| R.C. Qual. Control (Soil)                                                |             |         |                   |               | ₩       |           | •           | -      | 35       | -              | 45          |         |
| A.C. Qual. Control (Solution)                                            |             |         |                   |               |         |           |             |        | 20       |                | 20          |         |
| TLW Qual, Control (Lab. Blk)                                             |             |         |                   |               |         |           |             |        | 23 1     | <del>-</del> - | 23          | *       |
| Tracer Standardization (Sol.)                                            |             |         |                   |               |         |           |             |        | 13       | -              | 13          |         |
| Qualification Samples (Soll                                              |             |         |                   |               |         |           |             |        | 82       |                | <b>3</b> 6  |         |
| and Solubility)                                                          |             |         |                   |               |         |           |             |        |          |                | -           | ,       |
| Misc. (Casella's and                                                     | ~20**       | ~ \$0** | ~50** ~50** ~50** | ~ \$0** ~ \$0 | ~ 50    | ~ \$0 + ₹ | ~50** ~50** | * 20** |          | }              | ~ 200~      | , 100 · |
| Andersen's)                                                              |             |         |                   |               |         |           |             |        |          |                |             |         |
| T A SOL                                                                  | 57.8        | 213     | 0.9               | 170           | 644     | 217       | 656         | 198    | 119      | 14   20        | 2607        | 598     |
|                                                                          | ;           | -       |                   |               |         |           |             |        | -        | إ              | ( · · · · · | 1       |

Duplicate analyses performed
 Analyses performed on samples received from Ebarline Instr. Inc. and Isotopes Inc. but not listed in the data tables of this report.

## APPENDIX F EQUIPMENT AND PLOT OF TYPICAL SPECTRUM

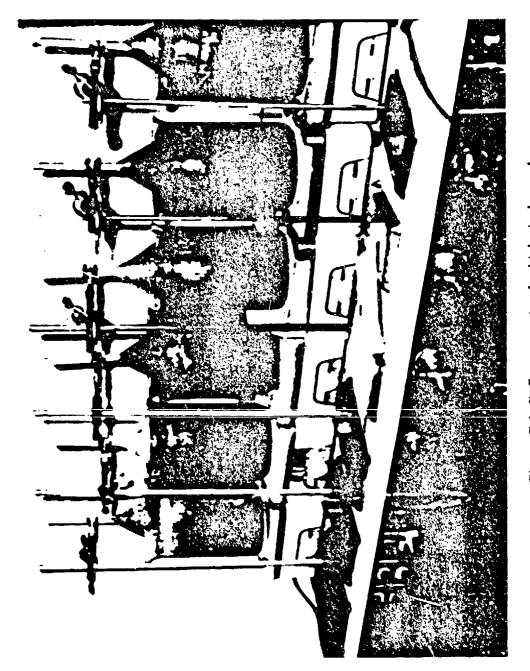



Figure F.1 Reflux apparatus for biological samplo. (Tracerlab photo)

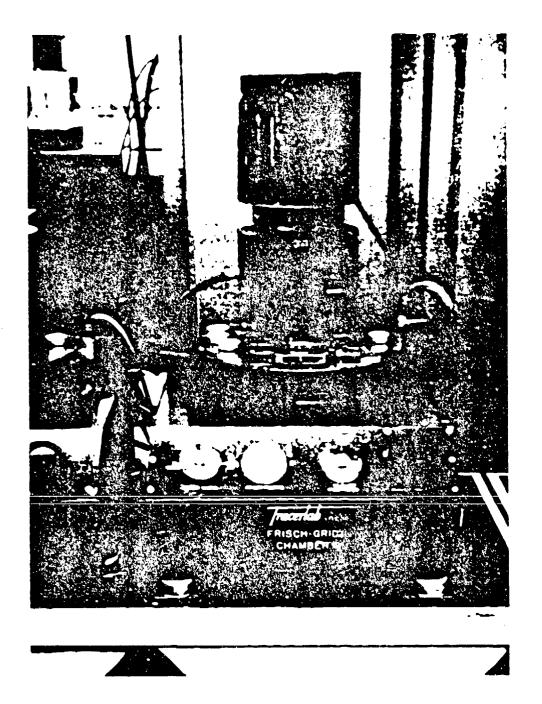



Figure F.2 Frisch-grid chambers. (Tracerlab photo)

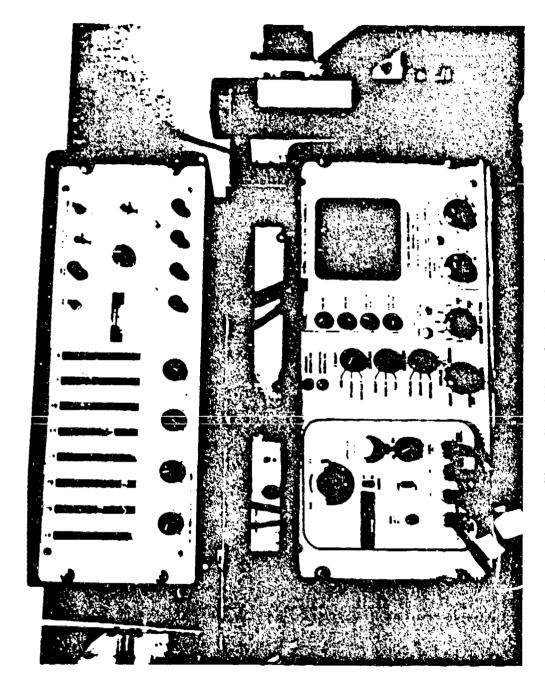



Figure F.3 TMC multichannel analyzer. (Tracerlab photo)

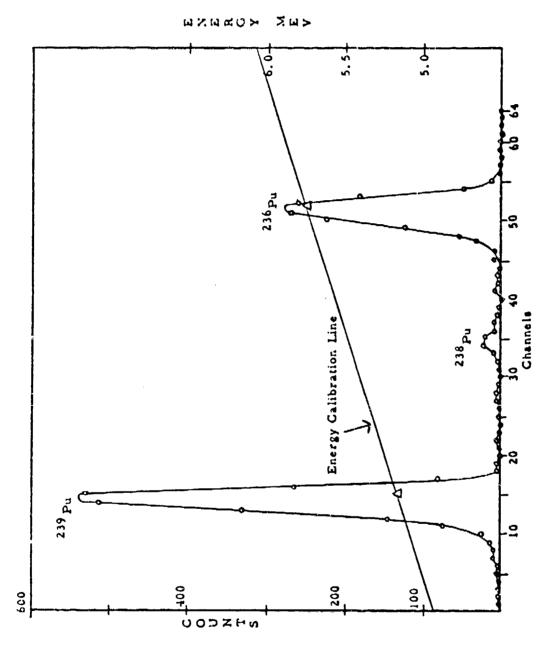



Figure F.4 Typical spectra, biological sample (burro liver).

۲.

## REFERENCES

- R. H. Wilson, R. G. Thomas and J. Newell Stannard
   "Biomedical and Aerosol Studies Associated with a Field Release of Plutonium"; Project 72, Operation Plumbbob, WT-1511.
   February, 1961; Sandia Corporation, Albuquerque, N. Mex.; Unclassified.
- 2. "Department of Defense Operations Plan for Operation Roller Coaster", hearth 1963; Headquarters Field Command, Defense Atomic Support Agency, Sandia Base, Albuquerque, New Mex.; Confidential.
- S. Glasstone, editor: "The Effects of Nuclear Weapons"; Revised Edition 1963; Superintendent of Documents, U.S.
   Government Printing Office, Washington, D.C.; Unclassified.
- 4. J. J. Katz and G. T. Seaborg; "The Chemistry of the Actinide

  Elements"; First Edition, 1957; Methuen and Co., Ltd. London,

  and John Wiley and Sons, Inc., New York; Unclassified.
- 5. "Handbook of Chemistry and Physics"; Forty-fourth Edition,
  1962-1963; Chemical Rubber Publishing Co., Cleveland, Ohio,
  Unclassified.
- G. T. Seaborg; "The Transuranium Elements"; First Edition,
   1958; Yale University Press, Addison-Wesley Publishing Co.,
   Inc., Reading, Mass.; Unclassified.
- Collected Papers on Methods of Analysis for Uranium and Thorium. Geological Survey Bulletin 1006, U. S. Government Printing Office, Washington; 1954.

271

Control of the State of the Sta

- 6. TLW 1070, Tracerlab Counting Room Manual, Nov. 1961.
- 9. L. J. Beaufait and H. R. Lukens, Handbook of Radiochemical Analysis, Vol. II, 111-114, AEC PB-131689 (March 1952).
- 10. H. V. Weise and W. H. Shipman, Anal. Chem. 33, 37 (1961).
- 11. E. Painter et al., Cl nical Physiology of Dogs Injected with
  Plutonium, AECD-2042, CH-2858 (June 1946).
- 12. U. Hollstein, A. H. M. Hoogma and J. Kooi, Health Phys. 8, 49 (1962).
- 13. S. M. Sanders and S. C. Leidt, Health Phys. 6, 189 (1961).
- 14. J. Kooi and U. Hollstein, Health Phys. 8, 41 (1962).
- C. L. Comar, Radioisotopes in Biology and Agriculture, 160-163,
   McGraw-Hill Book Company, Inc., New York (1955).
- 16. A. E. Greenberg, Radiological Health News of State of California,

  Department of Public Health 3, 1 (January 1964)
- 17. T. Y. Toribara and C. Predmore, <u>Determination of Plutonium</u>

  in Biological Samples, papers presented at the Eighth Annual

  Meeting on Bio-Assay and Analytical Chemistry, 81 (Cct., 18 19, 1962)
- 18. W. H. Langham, Determination of Plutonium in Human Urine, USAEC, MDDC-1555 (1947).
- 19. L. Wish and M. Roweil, USNRDL-TR-117 (1956).
- 20. R. F. Mitchell, Anal. Chem. 32, 326 (1960).
- 21. G. F. Smith, Analytica Chemica Acta 5, 5 (May 1953).